Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ban nao co chuyen shin ko cho minh muon minh giai cho 10 bai nhu the i love pac pac
\(A=\frac{2^{12}.3^4-4^5.9^2}{\left(2^2.3\right)^6+8^4.3^5}\)
\(A=\frac{2^{12}.3^4-2^{10}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(A=\frac{2^{10}.3^4\left(2^2-1\right)}{2^{10}.3^4\left(2^2.3^2+2^2.3\right)}\)
\(A=\frac{2^2-1}{2^2.3^2+2^2.3}\)
\(A=\frac{4-1}{36+12}\)
\(A=\frac{3}{48}=\frac{1}{16}\)
a) Ta có: \(6^6:6^3+4^3\cdot4^3\cdot4^2\)
\(=6^3+4^8\)
\(=216+65536=65752\)
b) Ta có: (-137)+(-129)
=-137-129
=-266
c) Ta có: -84-36
=-(84+36)
=-120
d) Ta có: \(11\cdot37+63\cdot11-49\)
\(=11\cdot\left(37+63\right)-49\)
\(=11\cdot100-49\)
\(=1100-49=1051\)
e) Ta có: \(16:2^3+4:3^3-4\cdot3\)
\(=2^4:2^3+\dfrac{4}{27}-12\)
\(=2+\dfrac{4}{27}-12\)
\(=-10+\dfrac{4}{27}=\dfrac{-270}{27}+\dfrac{4}{27}=\dfrac{-266}{27}\)
a: \(A=\dfrac{5^2\cdot3^{11}\cdot2^{11}\cdot2^8+3^2\cdot2^2\cdot2^{12}\cdot3^6\cdot3^2\cdot5^2}{2\cdot2^{12}\cdot3^{12}\cdot2^4\cdot5^4-3^8\cdot960^3}\)
\(=\dfrac{5^2\cdot3^{11}\cdot2^{19}+3^{10}\cdot2^{14}\cdot5^2}{2^{17}\cdot3^{12}\cdot5^4-3^{11}\cdot2^{18}\cdot5^3}\)
\(=\dfrac{5^2\cdot2^{14}\cdot3^{10}\left(3\cdot2^5+1\right)}{2^{17}\cdot3^{11}\cdot5^3\left(3\cdot5-2\right)}=\dfrac{1}{5}\cdot\dfrac{1}{8}\cdot\dfrac{1}{10}\cdot\dfrac{97}{13}=\dfrac{97}{5200}\)
b: \(B=\dfrac{2^{12}\cdot3^{10}+2^9\cdot3^9\cdot2^3\cdot3\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{2}{3}\cdot\dfrac{6}{5}=\dfrac{12}{15}=\dfrac{4}{5}\)
a)
\(2.6^2.3.6^4\text{:}6^5\)
\(=6.6^6.6^5\)
\(=6^7:6^5\)
\(=6^2=36\)
b) \(8.2^5.16:2^{11}\)
\(=2^3.2^5.2^4:2^{11}\)
\(=2^8.2^5:2^{11}\)
\(=2^{12}:2^{11}\)
\(=2\)
c) \(\left(4^4.16\right):\left(4^3.4\right)\)
\(=\left(4^4.4^2\right):4^4\)
\(=4^6:4^4\)
\(=4^2=16\)
a) \(...=2.2^2.3^2.3.2^4.3^4:\left(2^5.3^5\right)=2^7.3^7:2^5.3^5=2^2.3^2=4.9=36\)
b) \(...=2^3.2^5.2^4:2^{11}=2^{12}:2^{11}=2\)
c) \(...=2^8.2^4:\left(2^6.2^2\right)=2^{12}:2^8=2^4=16\)
d) \(...=5.5^3.5^2:5^6=5^6:5^6=1\)