Cho đường tròn (O) đường kính AB, gọi I là trung điểm OA, dây CD vuông góc với AB tại I. Lấy K tùy ý trên cung BC nhỏ, AK cắt CD tại H
a, Chứng minh tứ giác BIHK nội tiếp
b, Chứng minh AH.AK có giá trị không phụ thuộc vị trí điểm K
c, Kẻ DM ^ CB, DN ^ AC. Chứng minh MN, AB, CD đồng quy
d, Cho BC = 25cm. Hãy tính diện tích xung quanh hình trụ tạp thành khi cho tứ giác MCND quay quanh MD
a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 180 0 )
b, Chứng minh AH.AK = AI.AB = 1 2 R.2R = R 2 => ĐPCM
c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD
d, Tam giác OCA đều => A B C ^ = 30 0 ; M C D ^ = 60 0
Tính được CD = 2CI = 2 . 25 2 = 25cm; CM = 25 2 cm, MD = 25 3 2 cm, Sxq = 2.π.CM.MD = 625 3 2 πcm 2