Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 180 0 )
b, Chứng minh AH.AK = AI.AB = 1 2 R.2R = R 2 => ĐPCM
c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD
d, Tam giác OCA đều => A B C ^ = 30 0 ; M C D ^ = 60 0
Tính được CD = 2CI = 2 . 25 2 = 25cm; CM = 25 2 cm, MD = 25 3 2 cm, Sxq = 2.π.CM.MD = 625 3 2 πcm 2

a, H I B ^ = H K B ^ = 180 0
=> Tứ giác BIHK nội tiếp
b, Chứng minh được: DAHI ~ DABK (g.g)
=> AH.AK = AI.AB = R 2 (không đổi)
c, Chứng minh được MCND là hình chữ nhật từ đó => Đpcm

a: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
=>ΔAKB vuông tại K
Xét tứ giác BKHI có
góc BKH+góc BIH=180 độ
=>BKHI là tứ giác nội tiếp
b: Xét ΔAHI vuông tại I và ΔABK vuông tại K có
góc HAI chung
=>ΔAHI đồng dạng với ΔABK
=>AH/AB=AI/AK
=>AH*AK=AI*AB=1/4*R^2

a, HS tự làm
b, Ta có DAHI đồng dạng với DABK (g.g)
=>AH.AK = AI.AB = R 2
c, Chứng minh được I là trung điểm của CD
Từ MCND là hình chữ nhật suy ra MN và CD cắt nhau tại trung điểm của mỗi đường => ĐPCM
d, Chứng minh được I O C ^ = 60 0 => ∆ACO đều nên A C D ^ = 30 0
Chứng minh được DCBD đều nên CD = CB => CD = 25cm
Áp dụng tỉ số lượng giác trong ∆CDM ( M ^ = 90 0 ) ta tính được: MD = 12,5cm và MC = 21,7 cm
Từ đó tính được diện tích xung quanh hình trụ tạo thành khi cho tứ giác MCND quay quanh MD là: S x q = 2 r πh = 542 , 5 πcm 2

1. Ta có ÐOMP = 900 ( vì PM ^ AB ); ÐONP = 900 (vì NP là tiếp tuyến ).
Như vậy M và N cùng nhìn OP dưới một góc bằng 900 => M và N cùng nằm trên đường tròn đường kính OP => Tứ giác OMNP nội tiếp.
2. Tứ giác OMNP nội tiếp => ÐOPM = Ð ONM (nội tiếp chắn cung OM)
Tam giác ONC cân tại O vì có ON = OC = R => ÐONC = ÐOCN
=> ÐOPM = ÐOCM.
Xét hai tam giác OMC và MOP ta có ÐMOC = ÐOMP = 900; ÐOPM = ÐOCM => ÐCMO = ÐPOM lại có MO là cạnh chung => DOMC = DMOP => OC = MP. (1)
Theo giả thiết Ta có CD ^ AB; PM ^ AB => CO//PM (2).
Từ (1) và (2) => Tứ giác CMPO là hình bình hành.
3. Xét hai tam giác OMC và NDC ta có ÐMOC = 900 ( gt CD ^ AB); ÐDNC = 900 (nội tiếp chắn nửa đường tròn ) => ÐMOC =ÐDNC = 900 lại có ÐC là góc chung => DOMC ~DNDC
=> => CM. CN = CO.CD mà CO = R; CD = 2R nên CO.CD = 2R2 không đổi => CM.CN =2R2không đổi hay tích CM. CN không phụ thuộc vào vị trí của điểm M.
.
Ta có: ^AKB là góc nội tiếp chắn nửa đường tròn (O)
=> ^AKB = 90 (t/c góc nội tiếp ).
Xét tứ giác HKBI ta có:
^HKI=900 (do CD⊥AB tại I)
=> ^HKI + ^ HIB=180.
=> Tứ giác BKHI là tứ giác nội tiếp (dhnb).
b) Xét TGiac AHI và Tgiac AKB có:
^AKB = ^AHI ( do cùng =90 độ)
^A chung
=> tam giác AHI đồng dạng với AKB (g - g)
=> AH/AB = AI/AK (cặp cạnh tg ứg tỉ lệ)
=> AH.AK = AI.AB
Mà AI; AB cố định
=> AH.AK không phụ thuộc vào vị trí điểm K (đpcm)