Điền vào chỗ trống: A = (1÷2x-y)^2 =1÷4x^2-......+y^2 A. 2xy B. xy C.-2xy D.1÷2 xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Tự phân tích vế trái và điền vào vế phải
Bài 2 :
a) \(3x^3-6x^2+3x\)
\(=3x\left(x^2-2x+1\right)\)
\(=3x\left(x-1\right)^2\)
b) \(2xy+z+2x+yz\)
\(=\left(2xy+2x\right)+\left(z+yz\right)\)
\(=2x\left(y+1\right)+z\left(y+1\right)\)
\(=\left(y+1\right)\left(2x+z\right)\)
c) \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
d) \(3x^2-4x-7\)
\(=3x^2+3x-7x-7\)
\(=3x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-7\right)\)
1.
\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)
\(=2x^3y^2-3x^2y^2+7x^2y\)
\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)
\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)
\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3\)
\(=x^3+3x^2y+3xy^2+y^3\)
\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3\)
\(=x^3-3x^2y+3xy^2-y^3\)
2.
\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3-y^3\)
\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3+y^3\)
\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)
\(=24xy+4x-6y-1-24xy-4x\)
\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)
\(=-6y-1\)
#Toru
a) \(\dfrac{x^3-1}{x^2+x+1}=\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}=x-1\)
b) \(\dfrac{x^2+2xy+y^2}{2x^2+xy-y^2}\)
\(=\dfrac{\left(x+y\right)^2}{x^2+xy+x^2-y^2}=\dfrac{\left(x+y\right)^2}{x\left(x+y\right)+\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{x+y}{\left(2x-y\right)}\)
c) \(\dfrac{ax^4-a^4x}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x^3-a^3\right)}{a^2+ax+x^2}\)
\(=\dfrac{ax\left(x-a\right)\left(a^2+ax+x^2\right)}{a^2+ax+x^2}\)
\(=ax\left(x-a\right)\)
Nhân đa thức:
a) (1/2xy-3/4).(1/2xy+3/4)
b) (2x+3).(4x mũ 2 - 6x+9)
c) (xy-2).(x mũ 2 y mũ 2 + 2xy + 4)
a, \(\left(\frac{1}{2}xy-\frac{3}{4}\right)\left(\frac{1}{2}xy+\frac{3}{4}\right)=\frac{1}{4}x^2y^2+\frac{3}{8}xy-\frac{3}{8}xy-\frac{9}{16}=\frac{1}{4}x^2y^2-\frac{9}{16}\)
b, \(\left(2x+3\right)\left(4x^2-6x+9\right)=8x^3-12x^2+18x+12x^2-18x+27=8x^2+27\)
c, \(\left(xy-2\right)\left(x^2y^2+2xy+4\right)=x^3y^3+2x^2y^2+4xy-2x^2y^2-4xy-8=x^3y^3-8\)
Mk ko chép đề bài ra nhé
a, = 1/2xy.( -3/4 + 3/4 )
=1/2xy.
b, Áp dụng HĐT số 2, có: (Chỗ này ko cần chép cx đc)
=(2x+3).(2x+3)^2 (^ là mũ)
=(2x+3)^3
c, Áp dụng HĐT số 2, có:
=(xy-2).(xy + 2)^2
a, \(\left(2x+1\right)^2-2\left(2x+1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1-x+3\right)^2=\left(x+4\right)^2\)
b, \(xy+xz+3y+3z=x\left(y+z\right)+3\left(y+z\right)=\left(x+3\right)\left(y+z\right)\)
c, \(xy-xz+y-z=x\left(y-z\right)+\left(y-z\right)=\left(x+1\right)\left(y-z\right)\)
d, \(x^2-xy-8x+8y=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x\left(x-y\right)-8\left(x-y\right)=\left(x-8\right)\left(x-y\right)\)
e, \(x^2+2xy+y^2-xz-yz=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y+z\right)\left(x+y\right)\)
f, \(25-4x^2-4xy-y^2=25-\left(4x^2+4xy+y^2\right)\)
\(=5^2-\left(2x+y\right)^2=\left(5-2x-y\right)\left(5+2x+y\right)\)
1,
a, (2x + 1- x + 3)2 = (x+4)2
b,\(x\left(y+z\right)+3\left(y+z\right)=\left(y+z\right)\left(x+3\right)\)
c, \(x\left(y-z\right)+\left(y-z\right)=\left(y-z\right)\left(x+1\right)\)
d,\(x\left(x-y\right)+8\left(y-x\right)\)=\(\left(x-y\right)\left(x-8\right)\)
e,\(\left(x+y\right)^2-z\left(x+y\right)\)=\(\left(x+y\right)\left(x+y-z\right)\)
f,\(25-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2\)
\(=\left(5+2x+y\right)\left(5-2x-y\right)\)
Chúc các bn hc tốt
\(A=\left(\dfrac{1}{2}x-y\right)^2=\dfrac{1}{4}x^2-xy+y^2\)
Vậy chọn B