K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

Bài 1 :

Tự phân tích vế trái và điền vào vế phải 

Bài 2 :

a) \(3x^3-6x^2+3x\)

\(=3x\left(x^2-2x+1\right)\)

\(=3x\left(x-1\right)^2\)

b) \(2xy+z+2x+yz\)

\(=\left(2xy+2x\right)+\left(z+yz\right)\)

\(=2x\left(y+1\right)+z\left(y+1\right)\)

\(=\left(y+1\right)\left(2x+z\right)\)

c) \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

d) \(3x^2-4x-7\)

\(=3x^2+3x-7x-7\)

\(=3x\left(x+1\right)-7\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-7\right)\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)

25 tháng 8 2021

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

4 tháng 11 2018

a) \(2x^2-2y^2\)

\(=2\left(x^2-y^2\right)\)

\(=2\left(x-y\right)\left(x+y\right)\)

b) \(x^2-4x+4\)

\(=x^2-2\cdot x\cdot2+2^2\)

\(=\left(x-2\right)^2\)

c) \(x^2+2x+1-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x-y+1\right)\left(x+y+1\right)\)

d) \(x^2-4x\)

\(=x\left(x-4\right)\)

e) \(x^2+10x+25\)

\(=x^2+2\cdot x\cdot5+5^2\)

\(=\left(x+5\right)^2\)

g) \(x^2-2xy+y^2-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

h) \(2x^2-2\)

\(=2\left(x^2-1\right)\)

\(=2\left(x-1\right)\left(x+1\right)\)

i) \(5x^2-5xy+9x-9y\)

\(=5x\left(x-y\right)+9\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+9\right)\)

k) \(y^2-4y+4-x^2\)

\(=\left(y-2\right)^2-x^2\)

\(=\left(y-x-2\right)\left(y+x-2\right)\)

l) \(x^2-16\)

\(=x^2-4^2\)

\(=\left(x-4\right)\left(x+4\right)\)

m) \(3x^2-3xy+2x-2y\)

\(=3x\left(x-y\right)+2\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+2\right)\)

o) \(3x^4-6x^3+3x^2\)

\(=3x^2\left(x^2-2x+1\right)\)

\(=3x^2\left(x-1\right)^2\)

4 tháng 11 2018

a) 2x2 - 2y2

 = (2x - 2y)(2x + 2y)

 = 4(x - y)(x + y)

b) x2 - 4x + 4

 = (x - 2)2

c) x+ 2x + 1 - y2

 = (x + 1)2 - y2

 = (x + 1 - y)(x + 1 + y)

d) x2 - 4x 

 = x(x - 4)

e) x+10x + 25

 = (x + 5)2

g) x2 - 2xy + y2 - 9

= (x - y)2 - 32

 = (x - y - 3)(x - y + 3)

h) 2x2 - 2

= 2(x2 - 1) 

 = 2(x - 1)(x + 1)

i) 5x- 5xy + 9x - 9y

  = 5x(x - y) + 9(x- y)

 = (5x + 9)(x - y)

k) y2 - 4y + 4 - x2

 = (y - 2)2 - x2

 = (y - 2 - x)(y - 2 + x)

l) x- 16

 = x- 42

 = (x - 4)(x + 4)

m) 3x2 - 3xy + 2x -2y

 = 3x(x - y) +2(x-y)

 = (3x + 2)(x - y)

o) 3x- 6x+ 3x2

 = 3x4 - 3x3 - 3x3 + 3x2

 = 3x3(x - 1) - 3x2(x - 1)

 = (3x- 3x2)(x - 1)

 = 3x2(x - 1)(x - 1)

 = 3x2.(x - 1)2

8 tháng 9 2016

\(\text{Tìm x:}\)

\(a.x\left(x-1\right)-3x+3x=0\)

\(x\left(x-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

\(b.3x\left(x-2\right)+10-5x=0\)

\(3x^2-6x+10-5x=0\)

\(3x^2-11x+10=0\)

\(3x^2-11x=-10\)(bn xem lại đề nhé)

\(c.x^3-5x^2+x-5=0\)

\(x^3-5x^2+x=5\)

\(d.x^4-2x^3+10x^2-20x=0\)


 

8 tháng 9 2016

bài 1:phân tích thành phân tử

  a> x^2-6x-y^2+9

= (x-3)^2 -y^2

= (x-3 -y) (x-3+y)

b>x^2-xy-8x+8y

= x(x-y) - 8(x-y)

= (x-8) (x-y)

c>25-4x^2-4xy-y^2

= 5^2 - (2x + y)^2 

= (5 - 2x -y) (5 +2x+y) 

d>xy-xz-y+z

= x(y-z) - (y-z)

= (x-1) (y-z)

e>x^2-xz-yz+2xy+y^2

= (x+y)^2 - z(x+y)

= (x+y-z) (x+y)

g>x^2-4xy+4y^2-z^2-4zt-4t^2

= (x-2y)^2 - (z + 2t)^2 

= (x-2y -x-2t) (x-2y + z +2t)

bài 2:tìm X bt 

a>x.(x-1)-3x+3x=0

x (x-1) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy x=0 và x=1

b>3x.(x-2)+10-5x=0

3x(x-2) - 5 (x-2)=0

(3x-5) (x-2) =0

\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)

c>x^3-5x^2+x-5=0

x^2 (x-5) + (x-5) =0

(x^2 +1)(x-5) =0

\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)

Vậy x=5

d>x^4-2x^3+10x^2-20x=0

x^3 (x-2) + 10x(x-2) =0 

(x^3 + 10x) (x-2) =0

x(x^2 + 10) (x-2) =0

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)

Vậy x=0 và x=2

30 tháng 10 2023

a) 3x³ + 6x²y

= 3x².(x + 2y)

b) 2x³ - 6x²

= 2x².(x - 2)

c) 18x² - 20xy

= 2x.(9x - 10y)

d) xy + y² - x - y

= (xy + y²) - (x + y)

= y(x + y) - (x + y)

= (x + y)(y - 1)

e) (x²y² - 8)² - 1

= (x²y² - 8 - 1)(x²y² - 8 + 1)

= (x²y² - 9)(x²y² - 7)

= (xy - 3)(xy + 3)(x²y² - 7)

f) x² - 7x - 8

= x² - 8x + x - 8

= (x² - 8x) + (x - 8)

= x(x - 8) + (x - 8)

= (x - 8)(x + 1)

30 tháng 10 2023

a: \(3x^3+6x^2y\)

\(=3x^2\cdot x+3x^2\cdot2y=3x^2\left(x+2y\right)\)

b: \(2x^3-6x^2=2x^2\cdot x-2x^2\cdot3=2x^2\left(x-3\right)\)

c: \(18x^2-20xy=2x\cdot9x-2x\cdot10y=2x\left(9x-10y\right)\)

d: \(xy+y^2-x-y\)

\(=y\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(y-1\right)\)

e: \(\left(x^2y^2-8\right)^2-1\)

\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)

\(=\left(x^2y^2-7\right)\left(x^2y^2-9\right)\)

\(=\left(x^2y^2-7\right)\left(xy-3\right)\left(xy+3\right)\)

f: \(x^2-7x-8\)

\(=x^2-8x+x-8\)

\(=x\left(x-8\right)+\left(x-8\right)=\left(x-8\right)\left(x+1\right)\)

g: \(10x^2\left(2x-y\right)+6xy\left(y-2x\right)\)

\(=2x\cdot\left(2x-y\right)\cdot5x-2x\cdot\left(2x-y\right)\cdot3y\)

\(=2x\left(2x-y\right)\left(5x-3y\right)\)

h: \(x^2-2x+1-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

i: \(2x\left(x+2\right)+x^2\left(-x-2\right)\)

\(=2x\left(x+2\right)-x^2\left(x+2\right)\)
\(=\left(x+2\right)\left(2x-x^2\right)=x\cdot\left(x+2\right)\left(2-x\right)\)

k: \(-x^2+6x-9=-\left(x^2-6x+9\right)\)

\(=-\left(x^2-2\cdot x\cdot3+3^2\right)=-\left(x-3\right)^2\)

l: \(-2x^2+8xy-8y^2\)

\(=-2\left(x^2-4xy+4y^2\right)\)

\(=-2\left(x-2y\right)^2\)

m: \(3x^2+5x-3y^2-5y\)

\(=3\left(x^2-y^2\right)+5\left(x-y\right)\)

\(=3\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x+3y+5\right)\)

22 tháng 10 2023

2:

a: \(x^2-12x+20\)

\(=x^2-2x-10x+20\)

=x(x-2)-10(x-2)

=(x-2)(x-10)

b: \(2x^2-x-15\)

=2x^2-6x+5x-15

=2x(x-3)+5(x-3)

=(x-3)(2x+5)

c: \(x^3-x^2+x-1\)

=x^2(x-1)+(x-1)

=(x-1)(x^2+1)

d: \(2x^3-5x-6\)

\(=2x^3-4x^2+4x^2-8x+3x-6\)

\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)

\(=\left(x-2\right)\left(2x^2+4x+3\right)\)

e: \(4y^4+1\)

\(=4y^4+4y^2+1-4y^2\)

\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)

\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)

f; \(x^7+x^5+x^3\)

\(=x^3\left(x^4+x^2+1\right)\)

\(=x^3\left(x^4+2x^2+1-x^2\right)\)

\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)

\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)

\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)

\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)

h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)

\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)

\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)

\(=\left(x+1\right)^4-4\left(x+1\right)^2\)

\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)

\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)

\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)

i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)

\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)

\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)

\(=\left(x+2y-1\right)\left(x+2y-3\right)\)

j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)

\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)

\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)