9x2-6xy+y2-4
giúp mình với mọi người ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9x^2+6xy+y^2-25\)
\(=\left(3x+y\right)^2-25\)
\(=\left(3x+y-5\right)\left(3x+y+5\right)\)
\(a,4x^2+28x+49=\left(2x\right)^2+2.2x.7+7^2=\left(2x+7\right)^2\\ b,16y^2-8y+1=\left(4y\right)^2-2.4y.1+1^2=\left(4y-1\right)^2=\left(1-4y\right)^2\\ 4a^2+20ab+25b^2=\left(2a\right)^2+2.2a.5b+\left(5b\right)^2=\left(2a+5b\right)^2\\ d,9x^2-6xy+y^2=\left(3x\right)^2-2.3x.y+y^2=\left(3x-y\right)^2=\left(y-3x\right)^2\)
a) \(16x^2+8xy+y^2=\left(4x+y\right)^2\)
b) \(4x^2-2xy+\dfrac{1}{4}y^2=\left(2x-\dfrac{1}{2}y\right)^2\)
c) \(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
d) \(9x^2-6xy+y^2=\left(3x-y\right)^2\)
Lời giải:
a. $A=9x^2+15x+6xy+y^2+5y=(9x^2+6xy+y^2)+(15x+5y)$
$=(3x+y)^2+5(3x+y)=0^2+5.0=0$
b. $25x^2-y^4-5x+y^2=(25x^2-y^4)-(5x-y^2)=(5x-y^2)(5x+y^2)-(5x-y^2)$
$=(5x-y^2)(5x+y^2-1)$
a) \(=\left(6x\right)^2-2.6x.1+1=\left(6x-1\right)^2\)
b) \(=5xy\left(x^2+2x+1\right)=5xy\left(x+1\right)^2\)
c) \(=\left(3x-y\right)^2-25=\left(3x-y-5\right)\left(3x-y+5\right)\)
d) \(=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
A = - \(x^2\) - 4\(x\)
A = -(\(x^2\) + 4\(x\) + 4) + 4
A = -(\(x\) + 2)2 + 4
Vì (\(x\) + 2)2 ≥ 0 ⇒ -(\(x\) + 2)2 ≤ 0 ⇒ - (\(x\) + 2)2 + 4 ≤ 4
⇒ Amax = 4 ⇔ \(x\) + 2 = 0 ⇔ \(x\) = -2
Kết luận giá trị lớn nhất của A là 4 xảy ra khi \(x\) = -2
B = - 9\(x^2\) + 24\(x\) - 18
B = - (9\(x^2\) - 24\(x\) + 16) - 2
B = -(3\(x\) - 4)2 - 2
(3\(x\) - 4)2 ≥ 0 ⇒ -(3\(x\) - 4)2 ≤ 0 ⇒ -(3\(x\) - 4)2 - 2 ≤ -2
Bmax = -2 ⇔ 3\(x\) - 4 = 0 ⇔ \(x\) = \(\dfrac{4}{3}\)
Kết luận giá trị lớn nhất của B là: -2 xảy ra khi \(x\) = \(\dfrac{4}{3}\)
\(A=-x^2-4x\)
\(\Rightarrow A=-x^2-4x-4+4\)
\(\Rightarrow A=-\left(x^2+4x+4\right)+4\)
\(\Rightarrow A=-\left(x+2\right)^2+4\)
mà \(-\left(x+2\right)^2\le0,\forall x\)
\(\Rightarrow A=-\left(x+2\right)^2+4\le0+4=4\)
Vậy GTLN của A là 4
\(B=-9x^2+24x-18\)
\(\Rightarrow B=-9x^2+24x-16+16-18\)
\(\Rightarrow B=-\left(9x^2-24x+16\right)+16-18\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\)
mà \(-\left(3x-4\right)^2\le0,\forall x\)
\(\Rightarrow B=-\left(3x-4\right)^2-2\le0-2=-2\)
Vậy GTLN của B là -2
(9x2-6xy+y2)-42
=(3x-y)2-42
=(3x-y-4)(3x-y+4)
mình cảm ơn