K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

Đáp án C.

lim x → - ∞ y = - ∞   ( 1 ) f ( - 1 ) = - 1 + a 2 - b + c > 0   ( 2 ) f ( 2 ) = 8 + 4 a 2 + 2 a + c < 0   ( 3 ) lim x → - ∞ y = + ∞   ( 4 )

Từ (1) và (2) ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên - ∞ ; - 1 .

Từ (2) và (3)  ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên - 1 ; 2 .

Từ (3) và (4)  ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên 2 ; + ∞ .

Do f (x) =0 là phương trình bậc 3 ⇒  Có nhiều nhất 3 nghiệm

⇒  Đường thẳng cắt trục Ox tại 3 điểm phân biệt.

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

22 tháng 12 2015

bai nay dai lam nhung ban cu lam theo ncac buoc sau:
b1: lấy dữ liệu đầu bài để nhận với 1 số mà bằng được với cái phải chứng minh thế là ra
b2: nhân đa thức với đa thức(tự làm)
b3:ghép các phân thức đồng dạng với nhau.
b4:kết luận

25 tháng 12 2018

Sửa đề: \(a+b+c\le6\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)

                                                             đpcm

4 tháng 8 2015

Dự đoán dấu "=" và chọn điểm rơi phù hợp để áp dụng bất đẳng thức Trung bình cộng - Trung bình nhân

4 tháng 12 2017

giả sử a(1-b),b(1-c),c(1-a) >1/4

=> a(1-a)b(b-1)c(c-1)>1/4^3

ma a(1-a)=a-a^2=1/4- (a-1/2)^2<=1/4

tuong tu....

=> a(1-a)b(b-1)c(c-1)=<1/4^3(trai voi gia su)

Vay trong 3 h a(1-b),b(1-c),c(1-a) co it nhat 1 so < 1/4

4 tháng 12 2017

 Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca 
=> a + b + c = ab + bc + ca 
<=> a + b + c - ab - bc - ca = 0 
<=> a + b + c - ab - bc - ac + abc - 1 = 0 
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0 
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0 
<=> (b - 1)(-a + 1 -c + ac) = 0 
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0 
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0 
<=> (a - 1)(b - 1)(c - 1) = 0 
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0 
<=> a = 1 hoặc b = 1 hoặc c = 1 

29 tháng 8 2018

Theo giả thiết: \(a+b+c=3\Rightarrow b+c=3-a\). Tương tự: a+b=3-a và c+a=3-b

Khi đó \(\frac{1}{a^2+b+c}+\frac{1}{b^2+c+a}+\frac{1}{c^2+a+b}=\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\)

Ta chứng minh BĐT phụ sau:

\(\frac{1}{a^2-a+3}\le\frac{4-a}{9}\)(1)

Thật vậy, BĐT (1) \(\Leftrightarrow9\le\left(4-a\right)\left(a^2-a+3\right)\)

\(\Leftrightarrow9\le-a^3+5a^2-7a+12\)\(\Leftrightarrow-a^3+5a^2-7a+3\ge0\)

\(\Leftrightarrow-a^3+a^2+4a^2-4a-3a+3\ge0\)

\(\Leftrightarrow-a^2\left(a-1\right)+4a\left(a-1\right)-3\left(a-1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+4a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left(-a^2+a+3a-3\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)\left[-a\left(a-1\right)+3\left(a-1\right)\right]\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(3-a\right)\ge0\)(2)

Ta thấy \(a;b;c>0\) và \(a+b+c=3\Rightarrow a< 3\)\(\Rightarrow3-a>0\)

Mà \(\left(a-1\right)^2\ge0\forall a\). Nên \(\left(a-1\right)^2\left(3-a\right)\ge0\)

Do đó: BĐT (2) luôn đúng với mọi 0<a<3 => BĐT (1) cũng đúng

Chứng minh tương tự \(\frac{1}{b^2-b+3}\le\frac{4-b}{9};\frac{1}{c^2-c+3}\le\frac{4-c}{9}\)

Từ đó suy ra:

\(\frac{1}{a^2-a+3}+\frac{1}{b^2-b+3}+\frac{1}{c^2-c+3}\le\frac{12-\left(a+b+c\right)}{9}=\frac{12-3}{9}=1\)(Do a+b+c=3)

=> ĐPCM.

29 tháng 12 2018

Cho x,y,z € Z+ tm: x+y+z=4

Tính A= \(\sqrt{ }\)x(4-y)(4-z) +\(\sqrt{ }\)y(4-x)(4-x) +\(\sqrt{ }\)z(4-x)(4-y) -\(\sqrt{ }\)xyz