Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
bai nay dai lam nhung ban cu lam theo ncac buoc sau:
b1: lấy dữ liệu đầu bài để nhận với 1 số mà bằng được với cái phải chứng minh thế là ra
b2: nhân đa thức với đa thức(tự làm)
b3:ghép các phân thức đồng dạng với nhau.
b4:kết luận
Áp dụng Bđt Cauchy-Schwarz dạng engel ta có:
\(\frac{1}{ac}+\frac{1}{bc}\ge\frac{\left(1+1\right)^2}{ab+bc}=\frac{4}{c\left(a+b\right)}\ge\frac{4}{\frac{\left(a+b+c\right)^2}{4}}=16\)
=>Đpcm
giả sử a(1-b),b(1-c),c(1-a) >1/4
=> a(1-a)b(b-1)c(c-1)>1/4^3
ma a(1-a)=a-a^2=1/4- (a-1/2)^2<=1/4
tuong tu....
=> a(1-a)b(b-1)c(c-1)=<1/4^3(trai voi gia su)
Vay trong 3 h a(1-b),b(1-c),c(1-a) co it nhat 1 so < 1/4
Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca
=> a + b + c = ab + bc + ca
<=> a + b + c - ab - bc - ca = 0
<=> a + b + c - ab - bc - ac + abc - 1 = 0
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
<=> (b - 1)(-a + 1 -c + ac) = 0
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0
<=> (a - 1)(b - 1)(c - 1) = 0
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
<=> a = 1 hoặc b = 1 hoặc c = 1
Do: \(a^2+b^2+c^2=1\text{ nen }a^2\le1,b^2\le1,c^2\le1\)
\(\Rightarrow a\ge-1;b\ge-1;c\ge-1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Rightarrow1+a+b+c+ab+bc+ca+abc\ge0\)
Cần C/m:
\(1+a+b+c+ab+bc+ca\ge0\)
Ta có:
\(1+a+b+c+ab+bc+ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+ab+bc+ca+a+b+c\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2+2\left(a+b+c\right)+2ab+2bc+2ca+abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)^2+2\left(a+b+c\right)+1\ge0\)
\(\Leftrightarrow\left(a+b+c+1\right)^2\ge0\left(\text{luon dung}\right)\)
=> ĐPCM
Sửa đề: \(a+b+c\le6\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{6}=\frac{3}{2}\)
đpcm