Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có a1+a2+a3<a3+a3+a34
suy ra a1+a2+a3<a3.3
a4+a5+a6<a6+a6+a6
suy ra a4+a5+a6<a6.3
a7+a8+a9<a9+a9+a9
suy ra a7+a8+a9<a9.3
suy ra a1+a2+a3+...+a9/a3+a6+a9<a3.3+a6.3+a9.3 (vì a3,a6,a9>0)
suy ra a1+a2+a3+...+a9<3.(a3+a6+a9)=3
suy ra a1+a2+a3+...+a99<3
suy ra: điều phải chứng minh
a1/2=a2/a3=a3/a4=....=a9/a1=a1+a2+a3+...+a9/a1+a2+a3+...+a9=1 =>a1=a2,a2=a3,...,a9=a1 =>a1=a2=a3=a4=...=a9
\(a_1< a_2< a_3\\ \Rightarrow a_1+a_2+a_3=a_3+a_3+a_3=3a_3\\ a_4< a_5< a_6\\ \Rightarrow a_4+a_5+a_6=a_6+a_6+a_6=3a_6\\ a_7< a_8< a_9\\ \Rightarrow a_7+a_8+a_9=a_9+a_9+a_9=3a_9\\ \dfrac{a_1+a_2+...+a_9}{a_3+a_6+a_9}< \dfrac{3a_3+3a_6+3a_9}{a_3+a_6+a_9}=\dfrac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}=3\left(ĐPCM\right)\)
Giải :
Ta có : a1 < a3 ; a2 < a3
=> a1 + a2 + a3 < a3 + a3 + a3
hay a1 + a2 + a3 < 3.a3 (1)
Lại có : a4 < a6 ; a5 < a6
=> a4 + a5 + a6 < a6 + a6 + a6
hay a4 + a5 + a6 < 3. a6 (2)
Có : a7 < a9 ; a8 < a9
=> a7 + a8 + a9 < a9 + a9 + a9
Hay a7 + a8 + a9 < 3. a9 (3)
Từ (1), (2), và (3),
=>\(\frac{a_1+a_2+a_3+...+a_9}{a_3+a_6+a_9}=\frac{\left(a_1+a_2+a_3\right)+\left(a_4+a_5+a_6\right)+\left(a_7+a_8+a_9\right)}{a_3+a_6+a_9}<\frac{3.a_3+3.a_6+3.a_9}{a_6+a_6+a_9}=3\)
Sửa đề như bên dưới
Giải
Vì \(a_1< a_2< a_3< ...< a_9\)
Nên: \(\frac{a_1+a_2+a_3+...+a_9}{a_3+a_6+a_9}< \frac{a_3+a_6+a_9+...+a_3+a_6+a_9}{a_3+a_6+a_9}=\frac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}=3\)
\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b-c+2c}{a+b-c}=\frac{a-b-c+2c}{a-b-c}=1+\frac{2c}{a+b-c}=1+\frac{2c}{a-b-c}\)
\(\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Leftrightarrow\orbr{\begin{cases}c=0\\a+b-c=a-b-c\end{cases}\Leftrightarrow\orbr{\begin{cases}c=0\\b-c=-b-c\end{cases}\Leftrightarrow}\orbr{\begin{cases}c=0\\b=0\left(loai\right)\end{cases}}}\)
câu 1 thì b áp dụng t.c là ra
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c},c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
\(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)
=> đpcm
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{abc}{bcd}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(đpcm\right)\)
b, Tỉ số = nhau + tất vào là xông