Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.





a.\(2^{m+1}.3^n=12^m\Leftrightarrow3^n=\frac{12^m}{2.2^m}=\frac{1}{2}.6^m\Leftrightarrow2.3^n=2^m.3^m\)
\(\Leftrightarrow\hept{\begin{cases}m=1\\m=n\end{cases}\Leftrightarrow m=n=1}\)
Vậy m=n=1
b. Từ \(2^m=4^{n-1}\Leftrightarrow2^m=2^{2n-2}\Leftrightarrow m=2n-2\left(1\right)\)
Từ \(27^n=3^{m+8}\Leftrightarrow3^{3n}=3^{m+8}\Leftrightarrow3n=m+8\left(2\right)\)
Thay \(m=2n-2\Leftrightarrow3n=2n-2+8\Leftrightarrow n=6\Rightarrow m=10\)
Vậy m=10;n=6

2)
a)Ta có: 2m+5=n.(m-1)
=> 2m+5=nm-n
=>2m+5-nm+n=0
=>(2-n).m+5+n=0
=>(2-n).m-(2-n)+5+2=0
=>(2-n).(m-1)+7=0
=>(2-n).(m-1)=-7=-1.7=-7.1
Ta có bảng sau:
2-n | 1 | -7 | -1 | 7 |
n | 1 | 9 | 3 | -5 |
m-1 | -7 | 1 | 7 | -1 |
m | -6 | 2 | 8 | 0 |
Vậy (n,m)=(1,-6),(9,2),(3,8),(-5,0)

a, Để \(m\) là phân số
\(2+n\ne0\\ \Rightarrow n\ne-2\)
\(b,\)
\(\cdot,n=1\\ \Rightarrow m=\dfrac{1-1}{2+1}=\dfrac{0}{3}=0\\ \cdot,n=3\\ \Rightarrow m=\dfrac{1-3}{2+3}=-\dfrac{2}{5}\\ \cdot,n=12\\ \Rightarrow m=\dfrac{1-12}{2+12}=-\dfrac{11}{14}\)
a: ĐKXĐ: n+2<>0
=>n<>-2
b: Sửa đề: m+n=1
m+n=1 thì 1-n=(1-n)/(2+n)
=>(1-n)(2+n)=(1-n)
=>(1-n)(1+n)=0
=>n=1 hoặc n=-1
=>m=0 hoặc m=2
=>m=0 hoặc m=2/1
n=3 thì \(m=\dfrac{1-3}{2+3}=\dfrac{-2}{5}\)
n=12 thì \(m=\dfrac{1-12}{12+2}=\dfrac{-11}{14}\)


Bài 1: Theo đề, ta có : a : 18 ( dư 12 ) ( a \(\in N\) )
\(\Rightarrow\) a : 2.9 ( dư 3+9 )
\(\Rightarrow\) a : 9 ( dư 3 )
Bài 2 : Theo đề, ta có : B = 6 + m + n + 12
B = ( m + n ) + ( 6 + 12 )
B = ( m + n ) + 18
Vì \(18⋮3\) nên khi ( m + n ) \(⋮\) 3 thì B \(⋮3\)
Ngược lại, khi ( m + n ) \(⋮̸\) 3 thì B \(⋮̸\) 3.
Bài 3:
Ta có : A = \(2+2^2+2^3+...+2^{49}+2^{50}\)
A = \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{49}+2^{50}\right)\)
A = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^{49}\left(1+2\right)\)
A = \(2.3+2^3.3+...+2^{49}.3\)
A = \(3\left(2+2^3+...+2^{49}\right)\) \(⋮\) 3
Ta có : A = \(2+2^2+2^3+2^4+2^5+...+2^{49}+2^{50}\)
A = \(\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{46}+2^{47}+2^{48}+2^{49}+2^{50}\right)\)
A = \(2\left(1+2+2^2+2^3+2^4\right)+...+2^{46}\left(1+2+2^2+2^3+2^4\right)\)
A = 2 . 62 + ... + \(2^{46}.62\)
A = 62 ( 2 +...+ \(2^{46}\) )
A = 31 . 2( \(2+...+2^{46}\) ) \(⋮\) 31
Bài 4: Ta có : \(\overline{abcabc}\) = \(\overline{abc}000+\overline{abc}\) = \(\overline{abc}\left(1000+1\right)\) = \(\overline{abc}.1001\) = \(\overline{abc}.77.13\) \(⋮13\)
Vậy : \(\overline{abcabc}⋮13\)
Để mk làm bài 5 sau nha. Bây giờ đang bận
Bài 5:
a/ Ta có: \(n+5\) \(⋮\) n - 2 ( n \(\in\) N )
\(\Rightarrow\) n - 2 +7 \(⋮\) n - 2
\(\Rightarrow\) 7 \(⋮\) n - 2
\(\Rightarrow\) n - 2 \(\in\) Ư(7) = { 1 ; 7 }
\(\Rightarrow n\in\left\{3;9\right\}\)
b/ Ta có : 2n + 7 \(⋮\) n + 1 ( n \(\in\) N )
\(\Rightarrow\) 2( n + 1 ) + 5 \(⋮\) n + 1
\(\Rightarrow\) 5 \(⋮\) n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư (5) = { 1 ; 5 }
\(\Rightarrow\) n \(\in\) { 0 ; 4 }
Chúc bn hc tốt!!!
\(2^{\left(m+1\right)}.3^n=12^n\)
\(\Rightarrow2^{\left(m+1\right)}=12^n:3^n\)
\(\Rightarrow2^{\left(m+1\right)}=4^n\)
\(\Rightarrow2^{\left(m+1\right)}=\left(2^2\right)^n\)
\(\Rightarrow2^{\left(m+1\right)}=2^{\left(2n\right)}\)
\(\Rightarrow m+1=2n\)
\(\Rightarrow m=2n-1\)
\(n=\left(m+1\right):2\)