K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

1 tháng 4 2017

Phương trình: \(z^2+4z+5=0\)

có 2 nghiệm: \(\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)

+) \(\left(1+z_1\right)^{100}=\left(\left(-1+i\right)^2\right)^{50}\\ =\left(-2i\right)^{50}=\left(\left(-2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)

+) \(\left(1+z_2\right)^{100}=\left(\left(-1-i\right)^2\right)^{50}\\ =\left(2i\right)^{50}=\left(\left(2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)

Vậy: \(w=-2^{50}-2^{50}=-2^{51}\)

1 tháng 4 2017

Hình như đáp án bạn viết sai :)))))))))

8 tháng 8 2018

Chọn  C.

Không mất tính tổng quát ta gọi 4 nghiệm của phương trình là:

z1= 1; z2= - 2; z3= 1+ i và z= 1 - i 

Thay vào biểu thức 

 

14 tháng 6 2017

4 tháng 7 2017

Đáp án D.

29 tháng 9 2017

Đáp án A

Phương pháp.

Giả sử  Giả phương trình ban đầu để tìm được nghiệm  z 1 , z 2  Sử dụng giả thiết để đánh giá cho cho b. Đưa  về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.

Lời giải chi tiết.

Tính toán ta tìm được hai nghiệm

Giả sử . Từ  ta suy ra

Áp dụng (1) ta nhận được

Do đó giá trị nhỏ nhất của  là  2016 - 1

Đạt được khi và chỉ khi  

28 tháng 2 2017

21 tháng 6 2018

Đáp án A

18 tháng 8 2018

Đáp án A

Phương trình z 2 − z + 2017 2 = 0 ⇔ 4 z 2 − 4 z + 2017 = 0

⇔ 2 z − 1 2 = 2016 i 2 ⇔ z 1 = 1 − i 2016 2 z 2 = 1 + i 2016 2

Ta có z − z 1 + z − z 2 ≥ z − z 1 − z − z 2 = z − z 2 ≥ z 1 − z 2 − z − z 1 = 2016 − 1

Vật giá trị nhỏ nhất của biểu thức P là  P min = 2016 − 1

8 tháng 1 2017

24 tháng 10 2017

Đáp án B