K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

3 tháng 4 2019

5 tháng 1 2019

Đáp án D

21 tháng 4 2019

Cách 1 (cách hình học): Gọi M ( x ; y ) x . y ∈ ℝ  là điểm biểu diễn của số phức z thỏa mãn yêu cầu bài toán.

Có: z + 2 m = m + 1 ≥ 0  

TH1: m + 1 = 0 ⇔ ⇔ m = - 1 ⇒ z = 2  (loại) vì không thỏa mãn phương trình: z - 1 = z - i  

TH2: m + 1 > 0 ⇔ m > - 1  

Theo bài ra ta có:

z - 1 = z - i z + 2 m = m + 1 ⇔ x - 1 + y i = x + y - 1 i x + 2 m + y i = m + 1 ⇔ x - 1 2 + y 2 = x 2 + y - 1 2 x + 2 m 2 + y 2 = m + 1 2 ⇔ x - y = 0 1 x + 2 m 2 + y 2 = m + 1 2 2 *

Từ (1) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường thẳng: ( ∆ ) :   x - y = 0  

Từ (2) suy ra: tập hợp điểm M(x;y) biểu diễn của số phức z là đường tròn

( C ) :   T â m   I ( - 2 m ; 0 ) b k   R = m + 1  

Khi đó: M ∈ ∆ ∩ ( C ) ⇒  số giao điểm M chính là số nghiệm của hệ phương trình (*).

Để tồn tại hai số phức phân biệt z 1 , z 2  thỏa mãn ycbt ⇔ ( C )  cắt ∆  tại hai điểm phân biệt

⇔ d I , ∆ < R ⇔ - 2 m 2 < m + 1 m + 1 > 0 ⇔ - m + 1 < 2 m < m + 1 m + 1 > 0 ⇔ 1 - 2 < m < 1 + 2 m > - 1

Vì m ∈ ℝ ⇒ m ∈ S 0 ; 1 ; 2 . Vậy tổng các phần tử của S là 0+1+2=3.

 

Cách 2 (cách đại số):

Giả sử: z = x + y i x ; y ∈ ℝ  

Có:  z + 2 m = m + 1 ≥ 0

TH1: m + 1 = 0 ⇔ ⇔ m = - 1 ⇒ z = 2  (loại) vì không thỏa mãn phương trình: z - 1 = z - i  

TH2: m + 1 > 0 ⇔ m > - 1  (1)

Theo bài ra ta có:

z - 1 = z - i z + 2 m = m + 1 ⇔ x - 1 + y i = x + y - 1 i x + 2 m + y i = m + 1 ⇔ x - 1 2 + y 2 = x 2 + y - 1 2 x + 2 m 2 + y 2 = m + 1 2 ⇔ y = x x + 2 m 2 + x 2 = m + 1 2 ⇔ y = x 2 x 2 + 4 m x + 3 m 2 - 2 m + 1 = 0 *

Để tồn tại hai số phức phân biệt z 1 , z 2  thỏa mãn ycbt PT (*) có 2 nghiệm phân biệt

⇔ ∆ ' = 4 m 2 - 2 ( 3 m 2 - 2 m - 1 ) = 2 - m 2 + 2 m + 1 > 0 ⇔ 1 - 2 < m < 1 + 2 ( 2 )

Kết hợp điều kiện (1) và (2),  m ∈ ℝ ⇒ m ∈ S = 0 ; 1 ; 2

Vậy tổng các phần tử của S là: 0+1+2=3

Chọn đáp án D.

 

 

 

 

7 tháng 2 2018

10 tháng 8 2017

7 tháng 9 2019

Đáp án đúng : B

14 tháng 7 2019

6 tháng 11 2018

Đáp án B.

Số phức z 1 = 1  có điểm biểu diễn là A 1 ; 0  , số phức  z 2 = 2 − 3 i  có điểm biểu diễn là  B 2 ; − 3  

Gọi E x ; y  là điểm biểu diễn của số phức z, khi đó z = x + y i , x , y ∈ ℝ  

Suy ra 

P = x − 1 + y i + x − 2 + y + 3 i = x − 1 2 + y 2 + x − 2 2 + y + 3 2

⇒ P = E A + E B .   

Mặt khác

z − 1 − i + z − 3 + i = 2 2 ⇔ x − 1 + y − 1 i + x − 3 + y + 1 i = 2 2

  ⇔ x − 1 2 + y − 1 2 + x − 3 2 + y + 1 2 = 2 2 *  

 

Gọi M 1 ; 1 , N 3 ; − 1  thì E M + E N = 2 2 = M N ⇒  Điểm E thuộc đoạn MN.

Ta có phương trình đường thẳng MN là x + y + z − 2 = 0  với   x ∈ 1 ; 3

Bài toán trở thành:

Cho điểm E thuộc đoạn MN . Tìm giá trị lớn nhất của biểu thức P = E A + E B

Đặt  f ( x ) = x + y − 2.  Ta có

f 1 ; 0 = 1 + 0 − 2 = − 1 f 2 ; − 3 = 2 − 3 − 2 = − 3 ⇒ f 1 ; 0 . f 2 ; − 3 = 3 > 0  . Suy ra hai điểm A,B nằm cùng về một phía đối với MN . Gọi A' là điểm đối xứng với A qua MN thì A ' 2 ; 1 .Khi đó

P = E A + E B = E A ' + E B ≥ A ' B = 4 .

Dấu = xảy ra khi và chỉ khi

E ∈ A ' B ⇒ E = A ' B ∩ M N ⇒ E 2 ; 0  hay z = 2.

 

Do điểm E luôn thuộc đường thẳng MN nên P = E A + E B  đạt giá trị lớn nhất khi E ≡ M  hoặc E ≡ N .  

M A + M B = 1 + 17 N A + N B = 2 5 ⇒ M A + M B > N A + N B ⇒ max P = M A + M B = 1 + 17.  

Vậy

M = 1 + 7 , m = 4 ⇒ S = M + m = 5 + 17 .