K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
7 tháng 11 2017
Đáp án A
Phương pháp giải:
Đặt số phức w, biến đổi về z và sử dụng hệ thức Viet cho phương trình bậc hai
Lời giải:
Đặt
suy ra
Ta có là số thực
Lại có:
Phương trình: \(z^2+4z+5=0\)
có 2 nghiệm: \(\left\{{}\begin{matrix}z_1=-2+i\\z_2=-2-i\end{matrix}\right.\)
+) \(\left(1+z_1\right)^{100}=\left(\left(-1+i\right)^2\right)^{50}\\ =\left(-2i\right)^{50}=\left(\left(-2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)
+) \(\left(1+z_2\right)^{100}=\left(\left(-1-i\right)^2\right)^{50}\\ =\left(2i\right)^{50}=\left(\left(2i\right)^2\right)^{25}=\left(-4\right)^{25}=-2^{50}\)
Vậy: \(w=-2^{50}-2^{50}=-2^{51}\)
Hình như đáp án bạn viết sai :)))))))))