Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn [0;2018] sao cho ba số 5 x + 1 + 5 1 - x , a 2 , 25 x + 25 - x theo thứ tự đó, lập thành một cấp số cộng?
A. 2007.
B. 2018.
C. 2006.
D. 2008.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu m = 0 thì phương trình trở thành 1 = 0 : vô nghiệm.
Khi m ≠ 0 , phương trình đã cho có nghiệm khi và chỉ khi
∆ = m 2 - 4 m ≥ 0 ⇔ m ≤ 0 m ≥ 4
Kết hợp điều kiện m ≠ 0 , ta được m < 0 m ≥ 4
Mà m ∈ Z và m ∈ [−10; 10] ⇒ m ∈ {−10; −9; −8;...; −1} ∪ {4; 5; 6;...; 10}.
Vậy có tất cả 17 giá trị nguyên m thỏa mãn bài toán.
Đáp án cần chọn là: A
+) Phương trình ban đầu có nghiệm khi và chỉ khi phương trình bậc hai ẩn t có nghiệm dương.
Cách giải:
Chọn B
Phương pháp:
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Ta sử dụng phương trình có hai nghiệm dương phân biệt
Cách giải:
Ta có
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Khi đó
Mà nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.
Chọn A.
Đặt . Với suy ra 1 ≤ t ≤ 2.
Phương trình đã cho trở thành t2 + t = 2m + 2 (*)
Phương trình đã cho có nghiệm thuộc đoạn có nghiệm 1 ≤ t ≤ 2
Xét hàm số f(t) = t2 + t với1 ≤ t ≤ 2 , ta thấy f’(t) = 2t + 1 nên f(t) là hàm đồng biến trên đoạn [1; 2]
Suy ra 2 = f(1) ≤ f(t) ≤ f(2) = 6
Vậy phương trình có nghiệm khi 2 ≤ 2m + 2 ≤ 6 hay 0 ≤ m ≤ 2
Suy ra có 3 giá trị nguyên m thỏa mãn yêu cầu bài toán.