K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

28 tháng 1 2019

Đặt 

Suy ra 

Ta có 

Ta có bảng biến thiên

Từ bảng biến thiên ta suy ra 

Khi đó bất phương trình trở thành: 

Xét hàm số  với 

Ta có 

Suy ra hàm số f(t) nghịch biến trên 

Chọn C.

20 tháng 10 2018

26 tháng 3 2018

Đáp án B.

Phương pháp: 

Bất phương trình m ≥ f x ,    x ∈ D có nghiệm khi và chỉ khi m ≥ M i n D f x .  

Cách giải:

ĐKXĐ:  0 < x < 1

3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x ⇔ m x − x 2 − 1 − x 1 − x ≥ x x

⇔ m ≥ x x + 1 − x 1 − x x − x 2 ,    x ∈ 0 ; 1

Để bất phương trình đã cho có nghiệm thực thì m ≥ M i n 0 ; 1 f x , f x = x x + 1 − x 1 − x x − x 2  

Xét

f x = x x + 1 − x 1 − x x − x 2 = x + 1 − x 1 − x x − 1 x x − 1 , x ∈ 0 ; 1  

Đặt t = x + 1 − x ,    t ∈ 1 ; 2  

Khi đó,  

f x = x + 1 − x 1 − x 1 − x x 1 − x = t 1 − t 2 − 1 2 t 2 − 1 2 = t 3 − t 2 t 2 − 1 = 3 t − t 3 t 2 − 1 = g t

g ' t = − t 4 − 3 t 2 − 1 2 < 0 ,     ∀ t ∈ 1 ; 2  

⇒ g t min = g 2 = 3 2 − 2 2 2 − 1 = 2 ⇒ M i n 0 ; 1 f x = 2 ⇒ m ≥ 2  

m ∈ − 9 ; 9 ⇒ m ∈ 2 ; 3 ; 4 ; ... ; 8 ⇒

Có 7 giá trị thỏa mãn.

 

28 tháng 5 2017

Đáp án B

8 tháng 4 2019

17 tháng 2 2018

18 tháng 12 2017

Chọn đáp án D.

17 tháng 4 2019