7^(x-1)=343
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7.7^{x+1}=343\)
\(\Rightarrow7.7^{x+1}=7^3\)
\(\Rightarrow7^{x+1}=7^3:7\)
\(\Rightarrow7^{x+1}=7^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=2-1=1\)
( 3/7 ) 5 x ( 7/3 ) - 1 x ( 5/3 )6 : ( 343/652) - 2
= ( 3/7 x 7/3 ) + 5 - 1 x ( 5/3 : 343/652 ) - 2
= 1 + 5 - 1 x 2 - 1715/1956
= 6 - 2 - 1715/1956
=4 - 1715/1956
= 6109/1715
\(7^{\frac{1}{2}x-5}=343\)
\(7^{\frac{1}{2}x-5}=7^3\)
\(\frac{1}{2}x-5=3\)
\(\frac{1}{2}x=3+5\)
\(\frac{1}{2}x=8\)
\(x=8:\frac{1}{2}\)
\(x=16\)
\(7^{\frac{1}{2}x-5}=343\)
=>\(7^{\frac{1}{2}x-5}=7^3\)
=> \(\frac{1}{2}x-5=3\)
=> \(x=16\)
a) \(\left(\frac{1}{2}\right)^x=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\)
=> x = 5
b) \(\left(\frac{5}{7}\right)^x=\frac{125}{343}\)
\(\left(\frac{5}{7}\right)^x=\left(\frac{5}{7}\right)^3\)
=> x = 3
\(a,7^{x+3}< 343\\ \Rightarrow7^{x+3}< 7^3\\ \Leftrightarrow x+3< 3\\ \Leftrightarrow x< 0\\ b,\left(\dfrac{1}{4}\right)^x\ge3\\ \Leftrightarrow x\le log_{\dfrac{1}{4}}3\)
\(5^x\cdot5^{x-1}=125\)
\(5^{x+x-1}=5^3\)
\(5^{2x-1}=5^3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow x=2\)
\(343:7^x=7\)
\(343=7^{x+1}\)
\(7^3=7^{x+1}\)
\(\Rightarrow x+1=3\)
\(\Rightarrow x=2\)
\(7^{x-1}=343\)
\(7^{x-1}=7^3\)
\(\Rightarrow x-1=3\)
\(x=4\)
Vậy ...
7( x - 1 ) = 343
7( x - 1 ) = 73
x - 1 = 3
x = 3 + 1
x = 4