Cho ba đường tròn cùng đi qua một điểm P. Gọi các giao điểm khác P của hai trong ba đường tròn đó là A,B,C.Từ một điểm D (khác điểm P) trên đường tròn (PBC) kẻ các tia DB,DC cắt các đường tròn (PAB) ,(PAC) lần lượt tại M,N.Chứng minh ba điểm M,A,N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOAB cân tại O
mà OE là trung tuyến
nên OE vuông góc với AB
=>E nằm trên đường tròn đường kính OM(1)
Vì góc OCM=90 độ và góc ODM=90 độ
nên C,D nằm trên đường tròn đường kính OM(2)
Từ (1), (2) suy ra O,E,C,D cùng thuộc 1 đường tròn
b: Xét (O) có
MC,MD là tiếp tuyến
nên MC=MD
mà OC=OD
nên OM là trung trực của CD
=>MI*MO=MC^2
Xét ΔMCA và ΔMBC có
góc MCA=góc MBC
góc CMA chung
=>ΔMCA đồng dạng với ΔMBC
=>MC/MB=MA/MC
=>MC^2=MA*MB=MI*MO
1: Xét (O) có
OH là một phần đường kính
AB là dây
H là trung điểm của AB
Do đó: OH⊥AB
Xét tứ giác MDOH có
\(\widehat{MDO}+\widehat{MHO}=180^0\)
Do đó: MDOH là tứ giác nội tiếp
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD
Gọi O1 , O2 ,O3 lần lượt là tâm của ba đường tròn
Ta có: ( O 1 ) cắt ( O 2 ) tại A, ( O 2 ) cắt ( O 3 ) tại C , ( O 3 ) cắt ( O 1 ) tại B
Suy ra: D là điểm nằm trên ( O 3 )
DB cắt ( O 1 ) tại M, DC cắt ( O 2 ) tại N
Nối MA, NA, PA, PB, PC ta có các tứ giác nội tiếp AMBP, BDCP và APCN
*Tứ giác APBM nội tiếp trong đường tròn ( O 1 ) nên ta có: