Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì góc ACB là có nội tiếp chắn nửa đường tròn của (O)
=> góc ACB= 90 độ
Xét (I) có góc MCN là góc nội tiếp chắn cung MN
mà góc MCN= 90 độ
=> MN là đường kính của (I)
=> 3 điểm M,I,N thẳng hàng
b) vì Δ CIN cân tại I( IC=IN=R)
=> góc ICN= góc INC
lại có Δ COB cân tại O(OC=OB=R)
=> góc OCB= góc OBC
=> góc INC= góc OBC ( cùng = góc OCB)
mà 2 góc này ở vị trí đồng vị của 2 đường thẳng MN và AB
=> MN // AB
lại có ID vuông góc với AB
=> ID vuông góc với MN( đpcm)
a) zì H là trung điểm của AB nên \(OH\perp AB\)hay \(\widehat{OHM}=90^0\)
theo tính chất của tiếp tuyến ta lại có \(OD\perp DM\left(hay\right)\widehat{ODM}=90^0\)
=> M,D,O,H cùng nằm trên 1đường tròn
b) Theo tính chất tiếp tuyến ta có
MC=MD=> tam giác MDC cân tại M
=> MI là 1 đương phân giác của CMD , MẶt khác I là điểm chính giữa cung nhỏ CD nên :
\(\widehat{DCI}=\frac{1}{2}sđ\widebat{DI}=\frac{1}{2}sđ\widebat{CI}=\widehat{MCI}\)
=> CI là phân giác của góc MCD .
zậy I là tâm đường tròn nội tiếp tam giác MCD
1: Xét (O) có
OH là một phần đường kính
AB là dây
H là trung điểm của AB
Do đó: OH⊥AB
Xét tứ giác MDOH có
\(\widehat{MDO}+\widehat{MHO}=180^0\)
Do đó: MDOH là tứ giác nội tiếp
a: ΔOAB cân tại O
mà OE là trung tuyến
nên OE vuông góc với AB
=>E nằm trên đường tròn đường kính OM(1)
Vì góc OCM=90 độ và góc ODM=90 độ
nên C,D nằm trên đường tròn đường kính OM(2)
Từ (1), (2) suy ra O,E,C,D cùng thuộc 1 đường tròn
b: Xét (O) có
MC,MD là tiếp tuyến
nên MC=MD
mà OC=OD
nên OM là trung trực của CD
=>MI*MO=MC^2
Xét ΔMCA và ΔMBC có
góc MCA=góc MBC
góc CMA chung
=>ΔMCA đồng dạng với ΔMBC
=>MC/MB=MA/MC
=>MC^2=MA*MB=MI*MO
Gọi O1 , O2 ,O3 lần lượt là tâm của ba đường tròn
Ta có: ( O 1 ) cắt ( O 2 ) tại A, ( O 2 ) cắt ( O 3 ) tại C , ( O 3 ) cắt ( O 1 ) tại B
Suy ra: D là điểm nằm trên ( O 3 )
DB cắt ( O 1 ) tại M, DC cắt ( O 2 ) tại N
Nối MA, NA, PA, PB, PC ta có các tứ giác nội tiếp AMBP, BDCP và APCN
*Tứ giác APBM nội tiếp trong đường tròn ( O 1 ) nên ta có: