Cho biểu thức P = − 1 3 y 2 6 m − 3 + 1 − 2 m y y + 1 2 + 1 2 y − m với m là tham số.
a) Rút gọn P.
b) Tìm y để P = 0 khi m = 1 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)
b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)
a) \(M=a^2\left(a+b\right)-b\left(a^2-b^2\right)+1=a^3+a^2b-a^2b+b^3+1=a^3+b^3+1\)
b) \(P=x\left(x-y+1\right)-y\left(y+1-x\right)-2=x^2-xy+x-y^2-y+xy-2=x^2+x-y-y^2-2\)
c) \(Q=\left(m+3\right)\left(m^2+3m-5\right)+\left(6-m\right)m^2+11=m^3+3m^2-5m+3m^2+9m-15+6m^2-m^3+11=12m^2+4m-4\)
a: Ta có: \(M=a^2\left(a+b\right)-b\left(a^2-b^2\right)+1\)
\(=a^3+a^2b-a^2b+b^3+1\)
\(=a^3+b^3+1\)
1.
a) \(A=\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(A=\left(x^3-3x^2+3x-1\right)-\left(x^3+64\right)+\left(3x^2-3x\right)\)
\(A=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(A=\left(x^3-x^3\right)+\left(-3x^2+3x\right)+\left(3x-3x\right)+\left(-1-64\right)\)
\(A=-65\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
b) \(B=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)
\(B=\left[\left(x+y-1\right)-\left(x+y+1\right)\right].\left[\left(x+y-1\right)^2+\left(x+y-1\right).\left(x+y+1\right)+\left(x+y+1\right)^2\right]+6\left(x+y\right)^2\)
\(B=\left(x+y-1-x-y-1\right).\left[\left(x+y\right)^2-2\left(x+y\right).1+1+\left(x+y\right)^2-1+\left(x+y\right)^2+2\left(x+y\right).1+1\right]+6\left(x+y\right)^2\)
\(B=-2.\left(x^2+2xy+y^2-2x-2y+1+x^2+2xy+y^2-1+x^2+2xy+y^2+2x+2y+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2+1\right)+6\left(x+y\right)^2\)
\(B=-2.\left(3x^2+6xy+3y^2\right)-2+6\left(x+y\right)^2\)
\(B=-6\left(x+y\right)^2+6\left(x+y\right)^2-2\)
\(B=-6\left[\left(x+y\right)^2-\left(x+y\right)^2\right]-2\)
\(B=-2\)
Vậy giá trị của biểu thức trên không phụ thuộc vào biến.
2. \(A=x^2+6x+11\)
\(A=x^2+2x.3+3^2+2\)
\(A=\left(x+3\right)^2+2\)
Ta có: \(\left(x+3\right)^2\ge0\)
\(\Rightarrow\left(x+3\right)^2+2\ge2\)
\(\Rightarrow Min_A=2\Leftrightarrow x=-3\)
\(B=4-x^2-x\)
\(B=-x^2-x+4\)
\(B=-x^2-x-\dfrac{1}{4}+\dfrac{17}{4}\)
\(B=-\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{17}{4}\)
\(B=-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\)
Ta có: \(-\left(x+\dfrac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(x+\dfrac{1}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\)
\(\Rightarrow Max_B=\dfrac{17}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Bafi1:
\(\left(3x+4\right)\left(9x^2-12x+16\right)=65\)
<=>\(27x^3+64=65\)
=>\(27x^3=1\)
=>\(x^3=\dfrac{1}{27}\)
=>\(x=\dfrac{1}{3}\)
Vậy...
Bafi2:
\(M=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)
\(=-2-6x^2-12xy-6y^2+6\left(x^2+2xy+y^2\right)\)
\(=-2\)
Vậy...(đpcm)