K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(M=\dfrac{-y+4}{y-2}+\dfrac{1}{y-2}+\dfrac{3}{y+2}\)

\(=\dfrac{-y+5}{y-2}+\dfrac{3}{y+2}=\dfrac{-y^2-2y+5y+10+3y-6}{\left(y-2\right)\left(y+2\right)}\)

\(=\dfrac{-y^2+6y+4}{\left(y-2\right)\left(y+2\right)}\)

b: Khi y=3 thì \(M=\dfrac{-3^2+6\cdot3+4}{\left(3-2\right)\left(3+2\right)}=\dfrac{-5+18}{5}=\dfrac{13}{5}\)

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

4 tháng 4 2017

7 tháng 1 2020

để M xác định 

\(\Rightarrow\orbr{\begin{cases}y-1\ne0\\y+1\ne0\end{cases}}\Rightarrow\frac{y\ne1}{y\ne-1}.\)

\(b,M=\frac{1}{y-1}+\frac{y}{y+1}+\frac{2y^2}{y^2-1}\)

\(M=\frac{y+1}{\left(y+1\right)\left(y-1\right)}+\frac{y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}+\frac{2y^2}{\left(y+1\right)\left(y-1\right)}\)

\(M=\frac{y+1-y^2+y+2y^2}{\left(y+1\right)\left(y-1\right)}=\frac{1+2y+y^2}{\left(y+1\right)\left(y-1\right)}=\frac{\left(1+y\right)^2}{\left(y+1\right)\left(y-1\right)}\)

\(M=\frac{y+1}{y-1}\)

c, Để M nhận giá trị nguyên 

\(\Rightarrow y+1⋮y-1\)

\(\Leftrightarrow y-1+2⋮y-1\)

\(\Rightarrow y-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

y = .... Tự tính