Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(M=2x^3+xy^2-3xy+1\)
b, Thay x = -1 ; y = 2 ta được
M = -2 - 2 + 6 + 1 = 3
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
Bài 1 :
a) \(M=\dfrac{1}{2}x^2y.\left(-4\right)y\)
\(\Rightarrow M=-2x^2y^2\)
Khi \(x=\sqrt[]{2};y=\sqrt[]{3}\)
\(\Rightarrow M=-2.\left(\sqrt[]{2}\right)^2.\left(\sqrt[]{3}\right)^2\)
\(\Rightarrow M=-2.2.3=-12\)
b) \(N=xy.\sqrt[]{5x^2}\)
\(\Rightarrow N=xy.\left|x\right|\sqrt[]{5}\)
\(\Rightarrow\left[{}\begin{matrix}N=xy.x\sqrt[]{5}\left(x\ge0\right)\\N=xy.\left(-x\right)\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=x^2y\sqrt[]{5}\left(x\ge0\right)\\N=-x^2y\sqrt[]{5}\left(x< 0\right)\end{matrix}\right.\)
Khi \(x=-2< 0;y=\sqrt[]{5}\)
\(\Rightarrow N=-x^2y\sqrt[]{5}=-\left(-2\right)^2.\sqrt[]{5}.\sqrt[]{5}=-4.5=-20\)
2:
Tổng của 4 đơn thức là;
\(A=11x^2y^3+\dfrac{10}{7}x^2y^3-\dfrac{3}{7}x^2y^3-12x^2y^3=0\)
=>Khi x=-6 và y=15 thì A=0
a, \(M=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(M=\left(x^2y+3x^2y\right)+\left(\frac{1}{3}xy^2+\frac{3}{5}xy^2\right)-2xy-\frac{2}{3}\)
\(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\)
b, Giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\)
\(M=4.\left(-1\right)^2.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{2}\right)^2-2.\left(-1\right).\frac{1}{2}-\frac{2}{3}\)
\(M=4.1.\frac{1}{2}+\frac{8}{15}.\left(-1\right).\left(\frac{1}{4}\right)+1-\frac{2}{3}\)
\(M=2-\frac{2}{15}+1-\frac{2}{3}\)
\(M=\left(2+1\right)+\left(-\frac{2}{15}-\frac{2}{3}\right)\)
\(M=3+\left(\frac{-4}{5}\right)\)
\(M=\frac{11}{5}\)
Vậy giá trị của biểu thức \(M=4x^2y+\frac{8}{15}xy^2-2xy-\frac{2}{3}\) tại \(x=-1\) và \(y=\frac{1}{2}\) bằng \(\frac{11}{5}\)
\(a)M=-3x^2y^4.\left(-\frac{1}{3}y^4z^3x\right)\left(-\frac{1}{2}zỹ^3\right)\)
\(\Rightarrow M=\left(-3.-\frac{1}{3}.-\frac{1}{2}\right)\left(x^2.x.x^3\right)\left(y^4y^4y\right)\left(z^3z\right)\)
\(\Rightarrow M=-\frac{1}{2}x^6y^9z^4\)
\(b)\)Thay \(x=2;y=-1;z=1\)vào M ta được :
\(M=-\frac{1}{2}.2^6.\left(-1\right)^91^4\)
\(\Rightarrow M=-\frac{1}{2}.64.\left(-1\right).1\)
\(\Rightarrow M=-32.\left(-1\right).1\)
\(\Rightarrow M=32\)
Vậy \(M=32\)khi \(x=2;y=-1;z=1\)
A = 3x^3 +6x^2 + 3xy^3
x= 1 phần 2 ; p = -1 phần 3
A=3.1 phần 2^3 . -1 phần 3 + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3
=-1 phần 8 + -1 phần 2 - 1 phần 2
= -1 phần 4