tim GTLN A = x*(5 -3*x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6

a, A = 4/ /x-3/ + 2
= 4/ /x-3/ + 2
nhận xét /x-3/ >=0
=> 4/ /x-3/ >=0
=. 4/ / x-3/ +2 >=2
dấu bằng xảy ra khi x- 3 = 0
=> x= 3


Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)


a) \(5\cdot\left(\frac{x}{3}-4\right)=15\)
\(\Leftrightarrow\)\(\frac{x-12}{3}=3\)
\(\Leftrightarrow x-12=9\)
\(\Leftrightarrow x=21\)
Vạy x=21
+) 2x+3 chia hét cho x+1
Bạn chia cột dọc 2x+3 : x+1 =2 dư 1
Vậy để 2x+3 \(⋮\) x+1 thì x+1 \(\in\) Ư(1)
Mà Ư(1)={1;-1}
=> x+1={1;-1}
*)TH1: x+1=1<=>x=0
*)TH2: x+1=-1<=>x=-2
Vậy x={-2;0} thì 2x+3\(⋮\) x+1
b)Tìm GTLN của \(\frac{7}{\left(x+1\right)^2+1}\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\)
=> \(\frac{7}{\left(x+1\right)^2+1}\le\frac{7}{1}=7\)

Ta có (x+y)(x^2+xy+y^2)+(x^2+y^2)
=(x+y)(x^2+2xy+y^2-xy)+(x^2+2xy+y^2)-xy
=(x+y)(x+y)^2-xy(x+y)+(x+y)^2-xy
=(x+y)^2(x+y+1)-xy(x+y+1)
Tu do dat thua so chug la ra thui
Ta có:
\(A=x\left(5-3x\right)=-3x^2+5x=-3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{25}{12}\)
\(=-3\left(x-\frac{5}{6}\right)^2+\frac{25}{12}\le\frac{25}{12}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x=\frac{5}{6}\)
Vậy Max(A) = 25/12 khi x = 5/6
A = -3x2 + 5x
A = -3 (x2 - 5/3x)
A = -3 (x2 - 2.x.5/6 + 25/36 - 25/36)
A = -3(x - 5/6)2 +25/12
A <= 25/12
Dấu ''='' xra <=> x=5/6