![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) vì | \(\frac{5}{3}-x\)| \(\ge\)0 \(\forall\)x
x không tính được thì phải. sai đề rồi
b) | x - \(\frac{1}{10}\)| \(\ge\)0 \(\forall\)x
\(\Rightarrow\)9 - | x - \(\frac{1}{10}\)| \(\le\)9
\(\Rightarrow\)Qmax \(\Leftrightarrow\)Q = 9 \(\Rightarrow\)x = \(\frac{1}{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Với mọi x ta có :
\(\left|\dfrac{5}{3}-x\right|\ge0\)
\(\Leftrightarrow-\left|\dfrac{5}{3}-x\right|\le0\)
\(\Leftrightarrow P\le0\)
Dấu "=" xảy ra khi :
\(\left|\dfrac{5}{3}-x\right|=0\Leftrightarrow x=\dfrac{5}{3}\)
Vậy...
b/ Với mọi x ta có :
\(\left|x-\dfrac{1}{10}\right|\ge0\)
\(\Leftrightarrow-\left|x-\dfrac{1}{10}\right|\le0\)
\(\Leftrightarrow9-\left|x-\dfrac{1}{10}\right|\le9\)
\(\Leftrightarrow Q\le9\)
Dấu "=" xảy ra khi :
\(\Leftrightarrow\left|x-\dfrac{1}{10}\right|=0\Leftrightarrow x=\dfrac{1}{10}\)
Vậy..
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left|\frac{5}{3}-x\right|\ge0\forall x\)
Nên : \(-\left|\frac{5}{3}-x\right|\le0\forall x\)
Vậy Pmax = 0 , dấu bằng xảy ra khi x = \(\frac{5}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có: |5/3-x|>0(với mọi x)
=>-|5/3-x|<=0 hay A<=0
Nên GTLN của A là 0 khi:
5/3-x=0
x=5/3-0
x=5/3
Vậy GTLN của A là 0 khi x=5/3
b)Ta có: |x-1/10|>=0(với mọi x)
=>-|x-1/10|<=0
=>9-|x-1/10|<=9 hay B<=9
Nên GTLN của B là 9 khi:
x-1/10=0
x=0+1/10
x=1/10
Vậy GTLN của B là 9 khi x=1/10
![](https://rs.olm.vn/images/avt/0.png?1311)
b: \(B=-\left|x-\dfrac{1}{10}\right|+9< =9\)
Dấu '=' xảy ra khi x=1/10
c: \(D=\left|x-2015\right|^{2015}+\left(y-2016\right)^{2016}+1>=1\)
Dấu '=' xảy ra khi (x,y)=(2015;2016)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6