K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\left|x-3\right|\ge0\)

=> \(2\left|x-3\right|\ge0\)

Nên : \(A=9-2\left|x-3\right|\le9\)

Vậy \(A_{max}=9\) khi x = 3 

3 tháng 7 2018

\(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=6\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(8-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-2\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\x\le8\end{cases}\Rightarrow}2\le x\le8}\)

TH2: \(\hept{\begin{cases}x-2\le0\\8-x\le0\end{cases}\Rightarrow\hept{\begin{cases}x\le2\\x\ge8\end{cases}}\left(loại\right)}\)

Vậy Bmin = 6 khi 2 <= x <= 8

+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)

+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)

+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)

+) \(A=\left|x-1004\right|-\left|x+1003\right|\)

Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)

Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)

Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)

29 tháng 9 2020

\(E=\frac{1}{|x-2|+3}\)   

Ta có 

\(|x-2|\ge0\forall x\)  

\(|x-2|+3\ge3\) 

E đạt GTLN \(\Leftrightarrow|x-2|+3\) đạt GTNN 

\(\Leftrightarrow x-2=0\) 

\(x=2\) 

Vậy với x = 2 thì GTNN của E = \(\frac{1}{|2-2|+3}=\frac{1}{3}\)

29 tháng 9 2020

\(E=\frac{1}{\left|x-2\right|+3}\)

Ta có : | x - 2 | ≥ 0 ∀ x => | x - 2 | + 3 ≥ 3

=> \(\frac{1}{\left|x-2\right|+3}\le\frac{1}{3}\left(\forall x\right)\)

Dấu "=" xảy ra <=> | x - 2 | + 3 = 3

                        <=> | x - 2 | = 0

                        <=> x = 2

=> MaxE = 1/3 <=> x = 2

4 tháng 7 2018

Ta có: \(\left(x-\frac{2}{3}\right)^2\ge0\)

\(\Rightarrow\left(x-\frac{2}{3}\right)^2+9\ge9\)

\(\Rightarrow\frac{1}{\left(x-\frac{2}{3}\right)^2+9}\le\frac{1}{9}\)

\(\Rightarrow P=\frac{4}{\left(x-\frac{2}{3}\right)^2+9}\le\frac{4}{9}\)

Dấu "=" xảy ra khi x-2/3=0 => x=2/3

Vậy GTLN của P = 4/9 khi x=2/3

4 tháng 7 2018

\(\left(x-\frac{2}{3}\right)^2\ge0\)

\(\Rightarrow\left(x-\frac{2}{3}\right)^2+9\ge9\)

\(\Rightarrow\frac{4}{\left(x-\frac{2}{3}\right)^2+9}\le\frac{4}{9}\)

Dấu "=" xảy ra khi \(x-\frac{2}{3}=0\Rightarrow x=\frac{2}{3}\)

Vậy GTLN của P = \(\frac{4}{9}\)khi x = \(\frac{2}{3}\)

Bài 1:

Ta có: \(\sqrt{x}+\frac{9}{2}\)nhỏ nhất khi và chỉ khi \(\sqrt{x}\)nhỏ nhất

\(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0.

Khi đó M=\(\frac{9}{2}\)

⇒ M nhỏ nhất bằng \(\frac{9}{2}\)khi và chỉ khi x=0.

Bài 2:

Ta có:

\(N=\frac{1}{\sqrt{x}+3}\) lớn nhất khi và chỉ khi \(\sqrt{x}+3\) nhỏ nhất ⇒\(\sqrt{x}\)nhỏ nhất

Ta có: \(\sqrt{x}\ge0\). Dấu "=" xảy ra khi và chỉ khi x=0. Khi đó N=\(\frac{1}{3}\) ⇒ N lớn nhất bằng \(\frac{1}{3}\)khi và chỉ khi x=0.
12 tháng 2 2020

Cảm ơn bn nhìu!vui

15 tháng 9 2017

6 là số chẵn nên \(-\left[\frac{4}{9}x-\frac{2}{15}\right]^6\le0\)

=> B ≥ 3

=> GTLN của B = 3 khi x = 3/10

16 tháng 8 2015

Do \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)

=>\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

=>\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)

=>GTLN của B=3 <=>\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Leftrightarrow\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow\frac{4}{9}x=\frac{2}{15}\Leftrightarrow x=\frac{2}{15}:\frac{4}{9}=\frac{2}{15}\cdot\frac{9}{4}=\frac{3}{10}\)

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

20 tháng 1 2017

Ta có:

(2x + \(\frac{1}{3}\))4 \(\ge\) 0 \(\forall\) x \(\in\) Z

=> (2x + \(\frac{1}{3}\))4 - 1 \(\ge\) -1 \(\forall\) x \(\in\) Z

=> A \(\ge\) -1 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi (2x + \(\frac{1}{3}\))4 = 0

=> 2x + \(\frac{1}{3}\) = 0

=> 2x = 0 - \(\frac{1}{3}\)

=> 2x = \(\frac{-1}{3}\)

=> x = \(\frac{-1}{6}\)

Vậy GTNN của A = -1 khi x = \(\frac{-1}{6}\).

b) Lại có:

- (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 \(\le\) 0 \(\forall\) x \(\in\) Z

=> - (\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 + 3 \(\le\) 3 \(\forall\) x \(\in\) Z

=> B \(\le\) 3 \(\forall\) x \(\in\) Z

Dấu "=" xảy ra khi:

(\(\frac{4}{9}\)x - \(\frac{2}{15}\))6 = 0

=> \(\frac{4}{9}\)x - \(\frac{2}{15}\) = 0

=> \(\frac{4}{9}\)x = \(\frac{2}{15}\)

=> x = \(\frac{2}{15}\) : \(\frac{4}{9}\)

=> x = \(\frac{3}{10}\)

Vậy GTLN của B = 3 khi x = \(\frac{3}{10}\)

20 tháng 1 2017

a)Ta thấy: \(\left(2x+\frac{1}{3}\right)^4\ge0\)

\(\Rightarrow\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

\(\Rightarrow A\ge-1\)

Dấu "=" xảy ra khi \(\left(2x+\frac{1}{3}\right)^4=0\Leftrightarrow x=-\frac{1}{6}\)

Vậy \(Min_A=-1\) khi \(x=-\frac{1}{6}\)

b)Ta thấy:\(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

\(\Rightarrow-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)

\(\Rightarrow B\le3\)

Dấu "=" xảy ra khi \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6=0\Rightarrow x=\frac{3}{10}\)

Vậy \(Max_B=3\) khi \(x=\frac{3}{10}\)