Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(\Leftrightarrow |x+\frac{4}{15}|-3,75=-2,15\)
\(\Leftrightarrow |x+\frac{4}{15}|=-2,15+3,75=\frac{8}{5}\)
\(\Rightarrow \left[\begin{matrix} x+\frac{4}{15}=\frac{8}{5}\\ x+\frac{4}{15}=-\frac{8}{5}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{4}{3}\\ x=\frac{-28}{15}\end{matrix}\right.\)
b )
\(|\frac{5}{3}x|=|-\frac{1}{6}|=\frac{1}{6}\)
\(\Rightarrow \left[\begin{matrix} \frac{5}{3}x=\frac{1}{6}\\ \frac{5}{3}x=-\frac{1}{6}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{10}\\ x=-\frac{1}{10}\end{matrix}\right.\)
c)
\(|\frac{3}{4}x-\frac{3}{4}|-\frac{3}{4}=|-\frac{3}{4}|=\frac{3}{4}\)
\(\Leftrightarrow |\frac{3}{4}x-\frac{3}{4}|=\frac{3}{2}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}x-\frac{3}{4}=\frac{3}{2}\\ \frac{3}{4}x-\frac{3}{4}=-\frac{3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=3\\ x=-1\end{matrix}\right.\)
Bài 3:
a) Ta thấy:
\(|x+\frac{15}{19}|\geq 0, \forall x\Rightarrow A\ge 0-1=-1\)
Vậy GTNN của $A$ là $-1$ khi \(x+\frac{15}{19}=0\Leftrightarrow x=-\frac{15}{19}\)
b)Vì \(|x-\frac{4}{7}|\geq 0, \forall x\Rightarrow B\geq \frac{1}{2}+0=\frac{1}{2}\)
Vậy GTNN của $B$ là $\frac{1}{2}$ khi \(x-\frac{4}{7}=0\Leftrightarrow x=\frac{4}{7}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
![](https://rs.olm.vn/images/avt/0.png?1311)
mik chỉ làm được một bài thôi cậu chọn đi bài nào nói với mik , mik làm cho
Bài 1:
a) \(\left|x-\dfrac{2}{3}\right|+\left|y+x\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{3}\right|=0\\\left|y+x\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{2}{3}=0\\y+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{2}{3}\end{matrix}\right.\)
b) \(\left(x-2y\right)^2+\left|x+\dfrac{1}{6}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left|x+\dfrac{1}{6}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=0\\x+\dfrac{1}{6}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=x\\x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2y=-\dfrac{1}{6}\\x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{12}\\x=\dfrac{-1}{6}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(A=2x^2-5x-5\)
* Tại \(x=-2\) giá trị của biểu thức là :
\(A=2.\left(-2\right)^2-5.\left(-2\right)-5\)
\(A=8-\left(-10\right)-5=13\)
*Tại \(x=\dfrac{1}{2}\)
\(A=2\left(\dfrac{1}{2}\right)^2-5.\dfrac{1}{2}-5\)
\(A=-7\)
Câu 3:
a) \(A=\left(x-3\right)^2+9\ge9,\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)
..........................\(\Leftrightarrow x=3\)
Vậy MIN A = 9 \(\Leftrightarrow x=3\)
P/s: câu b coi lại đề
c) \(\left|x-1\right|+\left(2y-1\right)^4+1\ge1;\forall x,y\)
Dấu "='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy .............................
Câu 5:
Ta có: \(A=\dfrac{x-5}{x-3}=\dfrac{x-3-2}{x-3}=1-\dfrac{2}{x-3}\)
Để A nguyên thì \(2⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Do đó:
\(x-3=-2\Rightarrow x=1\)
\(x-3=-1\Rightarrow x=2\)
\(x-3=1\Rightarrow x=4\)
\(x-3=2\Rightarrow x=5\)
Vậy .....................
![](https://rs.olm.vn/images/avt/0.png?1311)
\(D=\dfrac{1}{\left|x-2\right|+3}\)
T a thấy : |x-2|+3 luôn lớn hơn hoặc bằng 3 với mọi x
=> \(\dfrac{1}{\left|x-2\right| +3}\) luôn nhỏ hơn hoặc bằng 1/3
Dấu bằng xảy ra <=> x-2=0 => x=2
Vậy GTLN của biểu thức D là 1/3 tại x=2
Giải:
a) \(A=10-4\left|x-2\right|\)
Vì \(\left|x-2\right|\ge0\)
\(\Leftrightarrow4\left|x-2\right|\ge0\)
\(\Leftrightarrow A=10-4\left|x-2\right|\le10\)
Vậy giá trị lớn nhất của biểu thức A là 10.
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
b) \(B=x-\left|x\right|\)
Vì \(\left|x\right|\ge0\)
\(\Leftrightarrow B=x-\left|x\right|\le0\)
Vậy giá trị lớn nhất của biểu thức B là 0.
\(\Leftrightarrow x=0\)
c) \(C=5-\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
\(\Leftrightarrow C=5-\left|2x-1\right|\le5\)
Vậy giá trị lớn nhất của biểu thức C là 5.
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
d) \(D=\dfrac{1}{\left|x-2\right|+3}\)
Để biểu thức D đạt giá trị lớn nhất thì \(\left|x-2\right|+3\) phải đạt giá trị bé nhất
Mà \(\left|x-2\right|\ge0\)
\(\Leftrightarrow\left|x-2\right|+3\ge3\)
\(\Rightarrow\) giá trị lớn nhất của \(\left|x-2\right|+3\) là 3
\(\Leftrightarrow D=\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
Vậy giá trị lớn nhất của biểu thức D là \(\dfrac{1}{3}\).
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
a/ Với mọi x ta có :
\(\left|\dfrac{5}{3}-x\right|\ge0\)
\(\Leftrightarrow-\left|\dfrac{5}{3}-x\right|\le0\)
\(\Leftrightarrow P\le0\)
Dấu "=" xảy ra khi :
\(\left|\dfrac{5}{3}-x\right|=0\Leftrightarrow x=\dfrac{5}{3}\)
Vậy...
b/ Với mọi x ta có :
\(\left|x-\dfrac{1}{10}\right|\ge0\)
\(\Leftrightarrow-\left|x-\dfrac{1}{10}\right|\le0\)
\(\Leftrightarrow9-\left|x-\dfrac{1}{10}\right|\le9\)
\(\Leftrightarrow Q\le9\)
Dấu "=" xảy ra khi :
\(\Leftrightarrow\left|x-\dfrac{1}{10}\right|=0\Leftrightarrow x=\dfrac{1}{10}\)
Vậy..