\(\dfrac{\sqrt{-3x}}{x^2-1}\). xác đinh khi và chỉ khi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`\sqrt((1+x)/(x^2-1))` có nghĩa `<=> (1+x)/(x^2-1) >=0 <=> {(x>1),(-1<x<1):}`
`\sqrt(3x-5)+\sqrt(2/(x-4))` có nghĩa `<=> {(3x-5>=0),(x-4>0):} <=> x>4`
a) ĐKXĐ: \(\dfrac{1+x}{x^2-1}\ge0\)
\(\Leftrightarrow\dfrac{1}{x-1}\ge0\)
\(\Leftrightarrow x-1>0\)
hay x>1
ĐKXĐ: \(-x^2+2x-1>=0\)
=>\(x^2-2x+1< =0\)
=>\(\left(x-1\right)^2< =0\)
mà \(\left(x-1\right)^2>=0\forall x\)
nên (x-1)2=0
=>x-1=0
=>x=1
Điều kiện xác định:
\(\left\{{}\begin{matrix}\dfrac{-5}{3-4x}\ge0\\3-4x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-4x< 0\\3-4x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{4}\\x\ne\dfrac{3}{4}\end{matrix}\right.\)
Vậy để hàm số \(y=\sqrt{\dfrac{-5}{3-4x}}\) xác định thì \(x>\dfrac{3}{4}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1}{\sqrt{x}}\)
b: Thay \(x=3+2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{2\sqrt{2}+2}{\sqrt{2}+1}=2\)
2.
\(x-2\sqrt{x}=\sqrt{x}(\sqrt{x}-3)+\frac{1}{4}(\sqrt{x}-3)+\frac{3}{4}(\sqrt{x}+1)\)
\(\geq \frac{3}{4}(\sqrt{x}+1)\)
\(\Rightarrow I\leq \frac{\sqrt{x}+1}{\frac{3}{4}(\sqrt{x}+1)}=\frac{4}{3}\)
Vậy $I_{\max}=\frac{4}{3}$ tại $x=9$
1. Với $x\geq \frac{1}{2}$ thì:
\(3x+\sqrt{x}+1=(\sqrt{2x}-1)(\sqrt{\frac{9}{2}x}-1)+(1+\frac{5\sqrt{2}}{2})\sqrt{x}\)
\(\geq (1+\frac{5\sqrt{2}}{2})\sqrt{x}\)
\(\Rightarrow H=\frac{\sqrt{x}}{3x+\sqrt{x}+1}\leq \frac{\sqrt{x}}{(1+\frac{5\sqrt{2}}{2})\sqrt{x}}=\frac{1}{1+\frac{5\sqrt{2}}{2}}=\frac{5\sqrt{2}-2}{23}\)
Đây chính là $H_{\max}$. Giá trị này đạt tại $x=\frac{1}{2}$
x≠1 hay x≠−1, một trong 2 cái thoi bạn
2 cái luôn nhe bạn :))