Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x−2=2(x−1)≠02x−2=2(x−1)≠0 khi x−1≠0x−1≠0 hay x≠1x≠1
x2−1=(x−1)(x+1)≠0x2−1=(x−1)(x+1)≠0 khi x−1≠0x−1≠0 và x+1≠0x+1≠0
hay x≠1x≠1 và x≠−1x≠−1
2x+2=2(x+1)≠02x+2=2(x+1)≠0 khi x+1≠0x+1≠0 hay x≠−1x≠−1
Do đó điều kiện để giá trị của biểu thức được xác định là x≠−1,x≠1x≠−1,x≠1
b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.
Thật vậy:(x+12x−2+3x2−1−x+32x+2).4x
a, \(2x-2\ne0\) khi \(2x\ne2\Leftrightarrow x\ne1\)
\(x^2-1=\left(x+1\right)\left(x-1\right)\ne0\) khi \(x+1\ne0\) và \(x-1\Leftrightarrow x\ne-1\) và \(x\ne1\)
\(2x+2=2\left(x+1\right)\ne0\) khi \(x\ne-1\)
điều kiên của x để giá trị của biểu thức được xác định là : \(x\ne-1\) và \(x\ne1\)
b, \(\left(\dfrac{x+1}{2x-2}\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)
= \(\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+3\right)}{2\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)
=\(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)
= \(\dfrac{40\left(x+1\right)\left(x-1\right)}{10\left(x+1\right)\left(x-1\right)}\)
Vậy giá trị biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến X
2) \(\dfrac{2x}{x^2-25}+\dfrac{5}{5-x}-\dfrac{1}{x+5}\)
\(=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5}{x-5}-\dfrac{1}{x+5}\) MTC: \(\left(x-5\right)\left(x+5\right)\)
\(=\dfrac{2x}{\left(x-5\right)\left(x+5\right)}-\dfrac{5\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5\left(x+5\right)-\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{2x-5x+25-x+5}{\left(x-5\right)\left(x+5\right)}\)
\(=\dfrac{-4x+30}{\left(x-5\right)\left(x+5\right)}\)
3)
Thay \(x=\dfrac{4}{5}\) vào biểu thức A ta được:
\(\dfrac{-4.\left(\dfrac{4}{5}\right)+30}{\left[\left(\dfrac{4}{5}\right)-5\right]\left[\left(\dfrac{4}{5}\right)+5\right]}\)
\(=\dfrac{-3,2+30}{-4,2.5,8}\)
\(=\dfrac{26,8}{-24,36}\)
\(=\dfrac{-670}{609}\)
Vậy giá trị của biểu thức A tại \(x=\dfrac{4}{5}\) là \(\dfrac{-670}{609}\)
a)
\(\left\{{}\begin{matrix}x-1\ne0\\x+2\ne0\end{matrix}\right.\)
b)
x khác 1
c)
x khác 0; x khác 5
d) x khác 5 ; x khác -5
\(1.\) Với : x = 25 ( TM ĐKXĐ), thì : \(A=\dfrac{7}{\sqrt{25}+8}=\dfrac{7}{5+8}=\dfrac{7}{13}\)
2. \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)3. \(P=A.B=\dfrac{7}{\sqrt{x}+8}.\dfrac{\sqrt{x}+8}{\sqrt{x}+3}=\dfrac{7}{\sqrt{x}+3}\)
Để P ∈ Z thì : \(\sqrt{x}+3\) ∈ Ư(7)
+) \(\sqrt{x}+3=7\) ⇔\(x=16\) ( TM ĐK)
+) \(\sqrt{x}+3=-7\) ⇔ Vô nghiệm
+) \(\sqrt{x}+3=1\)⇔ Vô nghiệm
+) \(\sqrt{x}+3=-1\) ⇔ Vô nghiệm
KL...............
thay vì lm cho bn thì mk sẽ chỉ bn cách lm nha . và mk sẽ lm bài khó nhất trong số này để lm mẩu .
đối với dạng toán tìm tập xác định nó sẽ có các trường hợp sau :
th1: \(\sqrt{a}\) thì \(a\ge0\)
th2: \(\dfrac{a}{b}\) thì \(b\ne0\)
th3: \(\dfrac{a}{\sqrt{b}}\) thì \(b>0\)
trong đám này chắc câu c là câu khó nhất nên mk sẽ lm câu c
bài làm
để \(\sqrt{5x^2-3x-8}\) xác định thì \(5x^2-3x-8\ge0\)
\(\Leftrightarrow\left(5x-8\right)\left(x+1\right)\ge0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x-8\ge0\\x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}5x-8\le0\\x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{8}{5}\\x\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{8}{5}\\x\le-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{8}{5}\\x\le-1\end{matrix}\right.\) vậy ...............................................................................................
a: ĐKXĐ: 7-x2>0
=>x2<7
hay \(-\sqrt{7}< x< \sqrt{7}\)
b: ĐKXĐ: \(\dfrac{2x-1}{2-x}>=0\)
\(\Leftrightarrow\dfrac{2x-1}{x-2}< =0\)
=>1/2<=x<2
ĐKXĐ: \(\dfrac{x^2}{x+1}>=0\)
=>x+1>0
=>x>-1