K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Đáp án D

b: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔBAD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra NP//MQ và NP=MQ

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC

mà AC\(\perp\)BD

nên QP\(\perp\)BD

mà MQ//BD

nên MQ\(\perp\)QP

hay \(\widehat{MQP}=90^0\)

Xét tứ giác MQPN có 

MQ//NP

MQ=NP

Do đó: MQPN là hình bình hành

mà \(\widehat{MQP}=90^0\)

nên MQPN là hình chữ nhật

Xét tứ giác MQPN có 

\(\widehat{MQP}+\widehat{MNP}=180^0\)

Do đó: MQPN là tứ giác nội tiếp

hay M,Q,P,N cùng thuộc 1 đường tròn

21 tháng 7 2021

a/
△ACD có:
- MN lần lượt đi qua trung điểm của AD và AC tại M và N
=> MN là đường trung bình của △ACD
Mặt khác, hình thang ABCD có:
- MP lần lượt đi qua trung điểm của AD và BC tại M và P
=> MP là đường trung bình của hình thang ABCD
=> MN trùng MP 
Vậy: M, N, P thẳng hàng. (đpcm)

b/
- MN là đường trung bình của △ACD (cmt)
=> \(MN=\dfrac{1}{2}CD\) 
Hay: \(MN=\dfrac{1}{2}.7=3,5\left(cm\right)\)
- MP là đường trung bình của hình thang ABCD (cmt)
=> \(MP=\dfrac{1}{2}AB.CD\)
Hay: \(MP=\dfrac{5+7}{2}=6\left(cm\right)\)
\(NP=MP-MN\)
Hay: \(NP=6-3,5=2,5\left(cm\right)\)
- Nhận xét: Độ dài MP = 1/2 tổng độ dài hai đáy AB và CD
Vậy:
\(MN=3,5\left(cm\right)\)
\(NP=2,5\left(cm\right)\)
\(MP=6\left(cm\right)\)

12 tháng 3 2018

a) Xét tứ giác ABEC có  AB // CE; AC // BE .

Vậy nên ABEC  là hình bình hành. Suy ra AB = CE.

Do MN là đường trung bình hình thang ABCD nên ta có :

\(MN=\frac{AB+DC}{2}=\frac{CE+DC}{2}=\frac{DE}{2}.\)

b) Do ABCD là hình thang cân nên ta có:

\(AD=BC;DB=AC\)

Xét tam giác ABD và tam giác BAC có:

Cạnh AB chung

AD = BC

BD = AC

\(\Rightarrow\Delta ABD=\Delta BAC\left(c-c-c\right)\)

\(\Rightarrow\widehat{ABD}=\widehat{BAC}\) hay \(\widehat{ABO}=\widehat{BAO}\)

Xét tam giác OAB có \(\widehat{ABO}=\widehat{BAO}\) nê OAB là tam giác cân tại O.

c) Do ABEC là hình bình hành nên AC = BE

Lại có AC = BD nên BD = BE

Suy ra tam giác BDE cân tại B.

Tam giác cân BDE có BH là đường cao nên đồng thời là đường trung tuyến.

Lại có theo câu a thì MN = DE/2

Giả thiết lại cho MN = BH. Vậy nên BH = DE/2

Xét tam giác BDE có trung tuyến BH bằng một nửa cạnh tướng ứng nên BDE là tam giác vuông tại B.

Vậy BDE là tam giác vuông cân tại B. 

13 tháng 12 2019

GIÚP VỚI

5 tháng 10 2021

a,Vì \(\left\{{}\begin{matrix}AM=MD\\BQ=QC\end{matrix}\right.\) nên MQ là đtb hình thang ABCD \(\Rightarrow MQ//AB\left(1\right)\)

Vì \(\left\{{}\begin{matrix}AM=MD\\DN=NB\end{matrix}\right.;\left\{{}\begin{matrix}BQ=QC\\AP=PC\end{matrix}\right.\) nên MN,PQ lần lượt là đtb các tam giác ABD,ABC

\(\Rightarrow MN//AB\left(2\right);PQ//AB\left(3\right)\)

Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow MN;MQ;PQ\) trùng nhau hay M,N,P,Q thẳng hàng

b,Ta có \(NP=MQ-MN-PQ\)

\(\Rightarrow NP=\dfrac{AB+CD}{2}-\dfrac{AB}{2}-\dfrac{AB}{2}\left(t/c.đường.trung.bình\right)\\ \Rightarrow NP=\dfrac{CD-AB}{2}\)

 

5 tháng 10 2021

cảm ơn nhiều ạ