Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(a+b)(b+c)(c+a)+abcA=(a+b)(b+c)(c+a)+abc
=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc
=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)
=(a+b+c)(ab+bc+ca)=(a+b+c)(ab+bc+ca)
Vậy....
giúp mình làm bài này đi rrooiif mình giúp cho
cho tam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
\( a)\left( {a + b - c} \right) + \left( {b + c - a} \right) + \left( {a + c - b} \right)\\ = a + b - c + b + c - a + a + c - b\\ = a + b + c\\ b)\left( {a - b} \right) + \left( {b - c + a} \right) + \left( {c - b} \right)\\ = a - b + b - c + a + c - b\\ = 2a + b\\ c)\left( {2a - b + c} \right) + \left( {b - c + a} \right) + \left( {c - 2a + b} \right)\\ = 2a - b + c + b - c + a + c - 2a + b\\ = a + b + c\\ d)\left( {a - c + b} \right) + \left( {b - c - a} \right) - a - b - c\\ = a - c + b + b - c - a - a - b - c\\ = - a - b - 3c \)
a) (a + b - c) + (b + c - a) + (a +c - b)
= a + b - c + b + c - a + a + c - b
= (a - a + a) + (b - b + b) + (c - c + c)
= a + b + c
b) (a - b) + (b - c + a) + (c - b)
= a - b + b - c + a + c - b
= (a + a) + (b - b - b) + (c - c)
= 2a - b
c) (2a - b + c) + (b - c + a) + (c - 2a + b)
= 2a - b + c + b - c + a + c - 2a + b
= (2a - 2a) + (b - b + b) + (c - c + c)
= b + c
d) (a - c + b) + (b - c - a) - a - b - c
= a - c + b + b - c - a - a - b - c
= (a - a - a) + (b + b - b) - (c + c + c)
= b - 2a - 3c
Chúc bạn học tốt@@
a, \(\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)
\(a-b+c-d=a+c-b-d\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
b, \(\left(a-b\right)-\left(c-d\right)=\left(a+d\right)-\left(b+c\right)\)
\(a-b-c+d=a+d-b-c\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
c, \(a-\left(b-c\right)=\left(a-b\right)+c=\left(a+c\right)-b\)
\(a-b+c=a-b+c=a+c-b\)
\(\Rightarrowđpcm\)
d, \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)-\left(a-b-c\right)=-\left(a+b-c\right)\)
\(a-b-b-c+c-a-a+b+c=-a-b+c\)
\(-a-b+c=-a-b+c\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
e, \(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(a-b-c+b+c-1=b-c+6-7+a-b+c\)
\(a-1=-1+a\Rightarrow a-1=a+\left(-1\right)\Rightarrow a-1=a-1\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
a) a(b-c)+c(a-b)=ab-ac+ca-cb=ab-cb=b(a-c)
b) a(b-c)-b(a+c)=ab-ac-ab-bc=-ac-bc=-c(a+b)
c) a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)
d) a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(a+d)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.