Trong mặt phẳng tọa độ Oxy, cho điểm M(3;2). Có bao nhiêu đường thẳng đi qua M, cắt Ox tại điểm có hoành độ là một số nguyên dương, đồng thời cắt Oy tại một điểm có tung độ là một số nguyên dương ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do điểm M’ đối xứng với điểm M qua điểm P nên P là trung điểm MM’.
Suy ra:
x P = x M + x M ' 2 y P = y M + y M ' 2 ⇔ x M ' = 2 x P − x M = 2.9 − 0 = 18 y M ' = 2 y P − y M = 2. ( − 3 ) − 4 = − 10 ⇒ M ' ( 18 ; − 10 )
Đáp án B
Tọa độ điểm I của đoạn thẳng MN là:
x I = x M + x N 2 = 0 + ( − 3 ) 2 = − 3 2 y I = y M + y N 2 = 4 + 2 2 = 3 ⇒ I − 3 2 ; 3
Đáp án C
Do P là trọng tâm tam giác MND nên:
x P = x M + x N + x D 3 y P = y M + y N + y D 3 ⇔ x D = 3 x P − x M − x N = 3.9 − 0 − ( − 3 ) = 30 y D = 3 y P − y M − y N = 3. ( − 3 ) − 4 − 2 = − 15 ⇒ D ( 30 ; − 15 )
Đáp án B
Lời giải:
$\overrightarrow{MN}-\overrightarrow{MP}=\overrightarrow{PN}=(x_N-x_P, y_N-y_P)=(4, -3)$
Đt qua M(3;2) có dạng y=ax+2-3a
khi x=1 thì y=2-2a. Để y nguyên dương thì có vô số giá trị a
KL: có vô số Đt thỏa mãn