K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 11 2020

x G K H y z

Kẻ \(Kz\)song song với \(Gx\)(như hình vẽ). 

Khi đó \(\widehat{xGK}=\widehat{GKz}\)(1) (hai góc so le trong) 

\(\widehat{GKH}=\widehat{GKz}+\widehat{zKH}\)(2)

mà theo giả thiết: \(\widehat{GKH}=\widehat{xGK}+\widehat{KHy}\)(3)

Từ (1), (2), (3) suy ra: \(\widehat{zKH}=\widehat{KHy}\)mà hai góc này ở vị trí so le trong suy ra \(Kz\)song song với \(Hy\).

Suy ra \(Gx\)song song với \(Hy\)(đpcm).

6 tháng 10 2021

a) Ta có: CD//Ey

\(\Rightarrow\widehat{CBE}=\widehat{E_1}=130^0\)(so le trong)

b) Ta có: Ta có: CD//Ey

\(\Rightarrow\widehat{EBD}+\widehat{E_1}=180^0\)(trong cùng phía)

\(\Rightarrow\widehat{EBD}=180^0-\widehat{E_1}=50^0\)

Ta có: \(\widehat{EBD}+\widehat{B_1}=50^0+40^0=90^0\)

=> AB⊥BE

23 tháng 5 2022

`a,`

Xét $\Delta OAC$ và $\Delta ABC$ ta có `:`

`OA=OB(gt)`

\(\widehat{AOC}=\widehat{BOC}\) `( Oz` là tia phân giác \(\widehat{B}\) `)`

Chung `Oz`

`=>` $\Delta OAC$ `=` $\Delta ABC$ `(c.g.c)`

`=>` `{(\hat{OAC}=\hat{OBC} \text{( 2 góc tương ứng )}  ),(AC=BC \text{ (2 cạnh tương ứng)}):}` 

Từ `\hat{OAC}=\hat{OBC}`

`=>` `\hat{xAC}=\hat{yBC}` `(` kề bù với `2` góc bằng nhau `)`

`b,` Xem lại đề bài `: OC=OB?` 

23 tháng 5 2022

xem lại đề câu `b,` nha bn 

21 tháng 9 2016

 

B A x C y z

 

Kẻ Bz // Ax

     Bz // Cy

ta có Ax // Bz//Cy=>Ax//Cy (đpcm)

21 tháng 9 2016

Ta có hình vẽ:

A x y y y B z z C

Kẻ tia Bz nằm trong góc ABC sao cho Ax // Bz

Ta có: BAx + ABz = 180o (trong cùng phía) 

ABz + CBz = ABC

Lại có: BAx + ABC + BCy = 360o (gt) 

=> BAx + ABz + CBz + BCy = 360o

=> 180o + CBz + BCy = 360o

=> CBz + BCy = 360o - 180o

=> CBz + BCy = 180o

Mà CBz và BCy là 2 góc trong cùng phía

=> Bz // Cy

Mà Ax // Bz

=> Bz // Cy (đpcm)

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)      Ta thấy tam giác AMN cân tại A do AM = AN

\( \Rightarrow \widehat {{M_1}} = ({180^o} - \widehat {{A_1}}):2 = ({180^o} - {42^o}):2 = {69^o}\)

Ta thấy tam giác PMN = tam giác AMN ( c-c-c )

\( \Rightarrow \widehat {{M_1}} = \widehat {PMN} = {69^o}\) (góc tương ứng )

Mà \( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} + \widehat {PMN} = {180^o}\)( các góc kề bù )

\( \Rightarrow \widehat {{M_2}} = {180^o} - {69^o} - {69^o} = {42^o}\)

Mà tam giác MPB cân tại M do MB = MP nên

\( \Rightarrow \widehat {{B_1}} = \widehat {MPB}\)

Áp dụng định lí tổng 3 góc trong tam giác

\( \Rightarrow \widehat {{B_1}} = ({180^o} - {42^o}):2 = {69^o}\)

b)      Ta thấy \(\widehat {{B_1}}\)và \(\widehat {{M_1}}\)ở vị trí đồng vị và bằng nhau nên

\( \Rightarrow \)MN⫽BC

Vì tam giác PMN = tam giác AMN nên ta có

\( \Rightarrow \widehat {{M_1}} = \widehat {ANM} = \widehat {PMN} = \widehat {MNP}\)( do 2 tam giác cân và bằng nhau )

Mà \(\widehat {MNA}\)và\(\widehat {PMN}\) ở vị trí so le trong

\( \Rightarrow \)MP⫽AC

c)      Ta có \(\Delta AMN = \Delta PMN = \Delta MBP(c - g - c)\)(1)

Vì MP⫽AC ( chứng minh trên )

\( \Rightarrow \widehat {MPN} = \widehat {PNC}\) ( 2 góc so le trong ) =\({42^o}\)

\( \Rightarrow \Delta MPN = \Delta NCP(c - g - c)\)(2)

Từ (1) và (2) \( \Rightarrow \) 4 tam giác cân AMN, MBP, PMN, NCP bằng nhau 

6 tháng 7 2021

xOy + tOx = 180( kề bù)

xOy + yOz = 180( kề bù) 

mà xOy = xOy. 

=> 2 góc này bằng nhau ( 2 góc cùng kề bù với góc thứ 3 thì bằng nhau).

=> 2 góc đối đỉnh.

like và tim bạn nhé

 

9 tháng 7 2021

2 góc kề bù cùng với góc thứ 3 thì = ??????batngo

17 tháng 12 2023

a: Ta có: Om là phân giác của góc xOz

=>\(\widehat{xOm}=\widehat{zOm}=\dfrac{1}{2}\cdot\widehat{xOz}\)

Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{zOm}+\widehat{yOz}=2\left(\widehat{zOm}+\widehat{zOn}\right)\)

=>\(\widehat{yOz}=2\cdot\widehat{zOm}+2\cdot\widehat{zOn}-2\cdot\widehat{zOm}=2\cdot\widehat{zOn}\)

=>On là phân giác của góc yOz

b: Ta có: At//Oz

=>\(\widehat{tAy}=\widehat{zOy}\)(hai góc đồng vị)

mà \(\widehat{yAu}=\dfrac{\widehat{yAt}}{2}\)(Au là phân giác của góc yAt)

và \(\widehat{yOn}=\dfrac{\widehat{yOz}}{2}\)(On là phân giác của góc yOz)

nên \(\widehat{yAu}=\widehat{yOn}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên Au//On

mà On\(\perp\)Om

nên Au\(\perp\)Om

1 tháng 1

loading... a) Xét ∆AMB và ∆AMC có:

AB = AC (gt)

AM là cạnh chung

MB = MC (do M là trung điểm của BC)

⇒ ∆AMB = ∆AMC (c-c-c)

b) Do ∆AMB = ∆AMC (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

c) Do ∆AMB = ∆AMC (cmt)

⇒ ∠ABM = ∠ACM (hai góc tương ứng)

⇒ ∠ABM = ∠HCM (1)

Do MH // AB (gt)

⇒ ∠ABM = ∠HMC (đồng vị) (2)

Từ (1) và (2) ⇒ ∠HMC = ∠HCM

Do ∆AMB = ∆AMC (cmt)

⇒ ∠MAB = ∠MAC (hai góc tương ứng)

⇒ ∠MAB = ∠HAM (3)

Do MH // AB (gt)

⇒ ∠MAB = ∠HMA (so le trong) (4)

Từ (3) và (4) ⇒ ∠HMA = ∠HAM

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Xét tam giác \(OPH\) tam giác \(PEH\) ta có:

\(\widehat {HOP} = \widehat {HPE}\) (giả thuyết)

\(\widehat {OPH} = \widehat {PEH}\) (giả thuyết)

Do đó, \(\Delta OPH\backsim\Delta PEH\) (g.g)

Suy ra, \(\frac{{PH}}{{EH}} = \frac{{OH}}{{PH}} \Rightarrow P{H^2} = OH.EH = 4.6 \Rightarrow P{H^2} = 24 \Leftrightarrow PH = \sqrt {24}  = 2\sqrt 6 \).

Vậy \(PH = 2\sqrt 6 \).

b) Xét tam giác \(AME\) tam giác \(AFM\) ta có:

\(\widehat {AME} = \widehat {AFM}\) (giả thuyết)

\(\widehat A\) chung

Do đó, \(\Delta AME\backsim\Delta AFM\) (g.g)

Suy ra, \(\frac{{AM}}{{AF}} = \frac{{AE}}{{AM}} \Rightarrow A{M^2} = AF.AE\) (điều phải chứng minh).

a: m⊥AB

n⊥AB

Do đó: m//n

9 tháng 11 2021

Bn làm giúp mik câu b, c được không ạ vì 2 câu đó mik chưa biết làm.