Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

M N x y z t
Giải : a) xy là đường trung trực của đoạn thẳng MN => \(\widehat{xOM}=\widehat{xON}=90^0\)
Do Ot là tia p/giác của \(\widehat{xON}\) nên
\(\widehat{xOt}=\widehat{tON}=\frac{\widehat{xON}}{2}=\frac{90^0}{2}=45^0\)
b) Do Oz là tia p/giác của \(\widehat{xOM}\)nên
\(\widehat{xOz}=\widehat{zOM}=\frac{\widehat{xOM}}{2}=\frac{90^0}{2}=45^0\)
Do Ox nằm giữa Ot và Oz nên \(\widehat{tOx}+\widehat{xOz}=\widehat{tOz}\)
=> \(\widehat{tOz}=45^0+45^0=90^0\)
=> Oz \(\perp\)Ot
Vì Ot là phân giác xON
=> xOt = NOt = 1/2 xON= 45 độ
Vì Oz là phân giác xOM
=> xOz = mOz = 45 độ
=> zOt = 45 + 45 = 90 độ
=> OZ vuông góc với OT

a) Xét \(\Delta ABD\)và \(\Delta ACE\)có:
\(\widehat{A}:chung\)
\(\Delta ABC\)cân => AB = AC ( ĐL )
\(\widehat{ADB}=\widehat{ACE}=90^0\)(gt)
=> \(\Delta ABD=\Delta ACE\) ( cạnh huyền - góc nhọn ) ( ĐPCM ) (1)
b) Từ ( 1 ) => AE = AD ( 2 cạnh tương ứng )
nên \(\Delta AED\)là tam giác cân ( ĐPCM )

vì ot vuông góc với oy => góc xot =90 độ
mà ot là tia phân giác của góc xoy => góc xoy=2.xot =180 độ
vì góc xoz nằm trong góc xoy và góc xoz =4.yoz
=> yoz+4yoz=180 độ
=> 5yoz = 180 độ
=> yoz=36
=> xoz=36.4=144
p/s: đề bảo tính một mk xoy nhưng họ cho cả xoz, yoz mk nghĩ pk có liên quan nên tính thêm :>
Xin lỗi bạn Tiểu Hy_Queen, nhưng bạn đã làm sai rồi. Đáp án :\(\widehat{xOy}\)=150 độ

hình tự vẽ
a, Vì OK là tia phân giác của xOy
=> xOK = KOy = xOy/2
Xét △AOK và △BOK
Có: OA = OB (gt)
AOK = KOB (gt)
OK : cạnh chung
=> △AOK = △BOK (c.g.c)
=> AK = KB (2 cạnh tương ứng)
b, Vì △AOK = △BOK (cmt)
=> AKO = OKB (2 góc tương ứng)
Mà AKO + OKB = 180o (2 góc kề bù)
=> AKO = OKB = 90o
=> OK ⊥ AB

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)

A B C H
Cm: Xét t/giác ABH và t/giác ACH
có góc B = góc C (vì t/giác ABC cân tại A)
AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> HB = HC (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)
Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = HB2 + AH2
=> AH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xem lại đề

A B C D 1 2
Do \(\widehat{B}=\widehat{C};\widehat{A_1}=\widehat{A_2}\Rightarrow\widehat{BDA}=\widehat{CDA}\)
\(\Rightarrow\Delta ABD=ACD\left(g.c.g\right)\Rightarrow AB=AC\)
a: Ta có: Om là phân giác của góc xOz
=>\(\widehat{xOm}=\widehat{zOm}=\dfrac{1}{2}\cdot\widehat{xOz}\)
Ta có: \(\widehat{xOz}+\widehat{yOz}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{zOm}+\widehat{yOz}=2\left(\widehat{zOm}+\widehat{zOn}\right)\)
=>\(\widehat{yOz}=2\cdot\widehat{zOm}+2\cdot\widehat{zOn}-2\cdot\widehat{zOm}=2\cdot\widehat{zOn}\)
=>On là phân giác của góc yOz
b: Ta có: At//Oz
=>\(\widehat{tAy}=\widehat{zOy}\)(hai góc đồng vị)
mà \(\widehat{yAu}=\dfrac{\widehat{yAt}}{2}\)(Au là phân giác của góc yAt)
và \(\widehat{yOn}=\dfrac{\widehat{yOz}}{2}\)(On là phân giác của góc yOz)
nên \(\widehat{yAu}=\widehat{yOn}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Au//On
mà On\(\perp\)Om
nên Au\(\perp\)Om