ƯCLN(3n+2,2n+1)(n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(3n+2;2n+1) = d
Ta có : 3n+2 chia hết cho d suy ra 6 n+4 chia hết cho d
2n+1 chia hết cho d suy ra 6n+3 chia hết cho d
Do đó (6n+4)-(6n +3) chia hết cho d suy ra 6n+4-6n-3 chia hết cho d
Suy ra 1 chia hết cho d suy ra d=1 hay với mọi n thuộc N thì 3n+2 và 2n+1 là hai số nguyên tố cùng nhau (đpcm)
Gọi d \(\inƯC\left(3n+2,2n+1\right);d\in N\)*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
=> ( 6n + 4 ) - ( 6n + 3 ) \(⋮d\)
=> 1 \(⋮d\)
=> d = 1
Vậy UCLN(3n+2,2n+1) = 1 với mọi n\(\in N\)
Gọi \(d=\left(n+2;2n+3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}n+2⋮d\\2n+3⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+4⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow\)\(1⋮d\Rightarrow d=1\)
Gọi d là \(UCLN\left(n+2,2n+3\right)\), khi đó:
\(\left\{{}\begin{matrix}n+2⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+4⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy \(UCLN\left(n+2,2n+3\right)=1\) (dpcm)
Gọi ƯCLN(3n+1; 5n+4) là d. Ta có:
3n+1 chia hết cho d => 15n+5 chia hết cho d
5n+4 chia hết cho d => 15n+12 chia hết cho d
=> 15n+12-(15n+5) chia hết cho d
=> 7 chia hết cho d
=> d = 7
=> ƯCLN(3n+1; 5n+4) = 7
Đặt d=ƯCLN(3n+1;5n+4)
=> (3n+1) chia hết cho d; (5n+4) chia hết cho d
=> (5n+4)-(3n+1) chia hết cho d
=> 3(5n+4)-5(3n+1) chia hết cho d
=>(15n+12)-(15n+5) chia hết cho d
=> 7 chia hết cho d
=> d thuộc {1;7}
=> d=7
Vậy WCLN(3n+1;5n+1)=7
Lưu ý bạn nên đổi chữ thuộc và chia hết thành dấu
có gì ko hiểu thì bạn hỏi mình nghe nếu mình đúng thì **** nha bạn
Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)
Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)
=> 6n+15-6n-14\(\vdots d\)
\(=> 1\vdots d \)
=> d \(\in Ư(1)=(1)\)
Vậy d=1
Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .
Gọi UCLN của ( 2n + 1 , 3n + 4 ) là d ( d thuộc N*)
=> 2n + 1 chia hết cho d => 3 x ( 2n + 1 ) chia hết cho d hay 6n + 3 chia hết cho d
=>3n + 4 chia hết cho d => 2 x ( 3n + 4 ) chia hết cho d hay 6n + 8 chia hết cho d
=> ( 6n + 8 ) - ( 6n + 3 ) = 5 chia hết cho d => d thuộc Ư của 5
Mà Ư của 5 là 1 và 5
Vậy nếu 2 số 2n + 1 và 3n + 4 nguyên tố cùng nhau thì UCLN của nó bằng 1
Vậy nếu 2 số 2n + 1 và 3n + 4 không nguyên tố cùng nhau thì UCLN của nó bằng 5
Gọi d là ƯCLN(3n+1,5n+4)
Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d
5n+4 chia hết cho d=>3*(5n+4)chia hết cho d
=>3*(5n+4)- 5*(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)
=>d={1,7}
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau
Vậy ƯCLN(3n+1,5n+4)=7
Gọi \(d\)là ước chung lớn nhất của \(3n+2\)và \(2n+1\).
Suy ra \(\left(3n+2\right)⋮d\) và \(\left(2n+1\right)⋮d\).
Suy ra \(\left(6n+4\right)⋮d\) và \(\left(6n+3\right)⋮d\)
\(\Rightarrow\left[\left(6n+4\right)-\left(6n+3\right)\right]⋮d\Leftrightarrow1⋮d\Rightarrow d=1\).
Vậy ước chung lớn nhất của \(3n+2\)và \(2n+1\) là \(1\).
Giúp mình với các bạn ơi, mình cần làm nhanh bài này