K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

tớ không biết

16 tháng 11 2016

Gọi UCLN của ( 2n + 1 , 3n + 4 ) là d ( d thuộc N*)

=> 2n + 1 chia hết cho d => 3 x ( 2n + 1 ) chia hết cho d hay 6n + 3 chia hết cho d

 =>3n + 4 chia hết cho d => 2 x ( 3n + 4 ) chia hết cho d hay 6n + 8 chia hết cho d 

=> ( 6n + 8 ) - ( 6n + 3 ) = 5 chia hết cho d => d thuộc Ư của 5

 Mà Ư của 5 là 1 và 5

Vậy nếu 2 số 2n + 1 và 3n + 4 nguyên tố cùng nhau thì UCLN của nó bằng 1

Vậy nếu 2 số 2n + 1 và 3n + 4 không nguyên tố cùng nhau thì  UCLN của nó bằng 5

30 tháng 11 2019

Đặt: \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

=> \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}\Rightarrow}\hept{\begin{cases}n^4+2n^2=n\left(n^3+2n\right)⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

=> \(\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

=> \(n^2+1⋮d\)

=> \(n\left(n^2+1\right)⋮d\)

=> \(n^3+n⋮d\)

=> \(\left(n^3+2n\right)-\left(n^3+n\right)⋮d\)

=> \(n⋮d\)mà \(n^4+3n^2+1⋮d\)

=> \(1⋮d\)

=> d = 1

=> \(\left(a;b\right)=1\)

9 tháng 11 2016

Gọi d là UCLN(2n+3,3n+5) 

\(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=>d = 1

=>UCLN(2n+3,3n+5) = 1

=>2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Gọi d là UCLN(5n+6,8n+7)

\(\Rightarrow\hept{\begin{cases}5n+6⋮d\\8n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}8\left(5n+6\right)⋮d\\5\left(8n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}40n+48⋮d\\40n+35⋮d\end{cases}}}\)

\(\Rightarrow\left(40n+48\right)-\left(40n+35\right)⋮d\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1;13\right\}\)

Để \(\left(5n+6,8n+7\right)=1\)thì \(d\ne13\)

=> UCLN(5n+6,8n+7) = 1

9 tháng 11 2016

B1) Gọi d là UCLN của (2n+3) và (3n+5)

Ta có: (2n+3):d và (3n+5):d => 3(2n+3):d và 2(3n+5):d

=> 2(3n+5)-3(2n+3):d <=> (6n+10-6n-9):d <=> 1:d. Do đó UCLN của 2 số đó là 1

Vậy chúng là 2 số nguyên tố cùng nhau.

B2) Cách giải tương tự. 

2 tháng 12 2017

Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)

Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)

=> 6n+15-6n-14\(\vdots d\)

\(=> 1\vdots d \)

=> d \(\in Ư(1)=(1)\)

Vậy d=1

9 tháng 8 2018

Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .

3 tháng 11 2023

Gọi d = ƯCLN(2n + 3; 3n + 4)

⇒ (2n + 3) ⋮ d và (3n + 4) ⋮ d

*) (2n + 3) ⋮ d

⇒ 3(2n + 3) ⋮ d

⇒ (6n + 9) ⋮ d   (1)

*) (3n + 4) ⋮ d

⇒ 2(3n + 4) ⋮ d   

⇒ (6n + 8) ⋮ d    (2)

Từ (1) và (2) suy ra:

(6n + 9 - 6n - 8) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy ƯCLN(2n + 3; 3n + 4) = 1

27 tháng 10 2018

a.1

b.1

c.1

1 tháng 11 2020

Giải thế ai hiểu nổi hả trời???

30 tháng 11 2019

Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath

27 tháng 11 2015

Gọi d là ƯCLN(2n+1;3n+1) với d thuộc N

Ta có 2n+1 chia hết cho d=> 3(2n+1 ) chia hết cho d => 6n +3 chia hết cho d (1)

          3n+1 chia hết cho d=> 2(3n+1) chia hết cho d => 6n+2 chia hết cho d (2)

Từ (1) và (2) suy ra (6n+3)-(6n+2) chia hết cho d

=> 1 chia hết cho d

=> d=1

Vậy ƯCLN của 2n+1 và 3n+1 là 1

 

27 tháng 11 2015

Gọi d là ƯCLN của 2n+1 và 3n+1 (d thuộc N*). Do đó:

  2n+1 chia hết cho d và 3n+1 chia hết cho d.

Vì 2n+1 chia hết cho d nên 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d

Vì 3n+1 chia hết cho d nên 2.(3n+1) chia hết cho d hay 6n+2 chia hết cho d nên:

              (6n+3) - (6n+2) chia hết cho d

               6n+3 - 6n - 2 chia hết cho d

                              1 chia hết cho d

suy ra d = 1

Vậy ƯCLN của 2n+1 và 3n+1 bằng 1