K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

x^2-2x+1-2(x^2-1)+x^2+4x+4=1

x^2-2x+1-2x^2+2+x^2+4x+4=1

2x+7=1

2x=-6

x=-3

vậy x=-3

27 tháng 10 2020

( x - 1 )2 - 2( x + 1 )( x - 1 ) + ( x + 2 )2 = 1

⇔ x2 - 2x + 1 - 2( x2 - 1 ) + x2 + 4x + 4 = 1

⇔ 2x2 + 2x + 5 - 2x2 + 2 = 1

⇔ 2x + 7 = 1

⇔ 2x = -6

⇔ x = -3

a: ĐKXĐ: x<>0; x<>1

\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |2x+1|=3

=>x=1(loại); x=-2(nhận)

Khi x=-2 thì P=4/-3=-4/3

c: P=-1/2

=>x^2/x-1=-1/2

=>2x^2=-x+1

=>2x^2+x-1=0

=>2x^2+2x-x-1=0

=>(x+1)(2x-1)=0

=>x=1/2; x=-1

 

27 tháng 10 2021

Bài 1: 

a: \(Q=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\left(x+\sqrt{x}\right)\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\sqrt{x}\left(\sqrt{x}+1\right)\)

\(=\dfrac{2x}{x-1}\)

Bạn vào biểu tượng \(\Sigma\) để nhập biểu thức cho chính xác nhé

a: Ta có: \(M=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}\)

\(=\dfrac{x^2}{x-1}\)

b: Để M>1 thì M-1>0

\(\Leftrightarrow\dfrac{x^2-x+1}{x-1}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

29 tháng 8 2021

a) ĐKXĐ: x # 0; x # 1; x# -1

M = (x^2)/(x-1)

a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5(nhận) hoặc x=1(loại)

Khi x=5 thì \(E=\dfrac{5^2}{5-1}=\dfrac{25}{4}\)

c: Để E=1/2 thì \(\dfrac{x^2}{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow2x^2-x+1=0\)

hay \(x\in\varnothing\)

 

19 tháng 5 2022

f) \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-x+x-1+1}{x-1}=\dfrac{x\left(x-1\right)+x-1+1}{x-1}=x+1+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)\(A=4\Leftrightarrow x=2\)

-Vậy \(A_{min}=4\)

1 tháng 9 2021

a. (x - 2)(x + 2) - (x - 3)2 = 9

<=> x2 - 22 - (x - 3)2 = 32

<=> x - 2 - (x - 3) = 3

<=> x - 2 - x + 3 = 3

<=> x - x = 3 - 3 + 2

<=> 0 = 2 (Vô lí)

Vậy nghiệm của PT là S = \(\varnothing\)

b: Ta có: \(\left(x-1\right)\left(x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)=x\left(2-x\right)\)

\(\Leftrightarrow x^3+x-x^2-1-x^3-1=2x-x^2\)

\(\Leftrightarrow-x^2+x-2-2x+x^2=0\)

\(\Leftrightarrow-x=2\)

hay x=-2

11 tháng 8 2023

\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)

a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)

b) Để \(A=-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)

\(\Leftrightarrow2x^2=-\left(x+1\right)\)

\(\Leftrightarrow2x^2+x+1=0\)

\(\Delta=1-8=-7< 0\)

Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)

c) Để \(A< 1\) 

\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)

\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)

\(\Leftrightarrow x^2-x-1< 0\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)

\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)

d) Để A nguyên

\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)

\(\Leftrightarrow x^2⋮x+1\)

\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)

\(\Leftrightarrow x^2-x^2+x⋮x+1\)

\(\Leftrightarrow x⋮x+1\)

\(\Leftrightarrow x-x-1⋮x+1\)

\(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)

11 tháng 8 2023

!ERROR 404!