K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

x^2-2x+1-2(x^2-1)+x^2+4x+4=1

x^2-2x+1-2x^2+2+x^2+4x+4=1

2x+7=1

2x=-6

x=-3

vậy x=-3

27 tháng 10 2020

( x - 1 )2 - 2( x + 1 )( x - 1 ) + ( x + 2 )2 = 1

⇔ x2 - 2x + 1 - 2( x2 - 1 ) + x2 + 4x + 4 = 1

⇔ 2x2 + 2x + 5 - 2x2 + 2 = 1

⇔ 2x + 7 = 1

⇔ 2x = -6

⇔ x = -3

a: ĐKXĐ: x<>0; x<>1

\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |2x+1|=3

=>x=1(loại); x=-2(nhận)

Khi x=-2 thì P=4/-3=-4/3

c: P=-1/2

=>x^2/x-1=-1/2

=>2x^2=-x+1

=>2x^2+x-1=0

=>2x^2+2x-x-1=0

=>(x+1)(2x-1)=0

=>x=1/2; x=-1

 

Bạn vào biểu tượng \(\Sigma\) để nhập biểu thức cho chính xác nhé

a: \(E=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5(nhận) hoặc x=1(loại)

Khi x=5 thì \(E=\dfrac{5^2}{5-1}=\dfrac{25}{4}\)

c: Để E=1/2 thì \(\dfrac{x^2}{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow2x^2-x+1=0\)

hay \(x\in\varnothing\)

 

19 tháng 5 2022

f) \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-x+x-1+1}{x-1}=\dfrac{x\left(x-1\right)+x-1+1}{x-1}=x+1+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\dfrac{1}{x-1}}+2=4\)\(A=4\Leftrightarrow x=2\)

-Vậy \(A_{min}=4\)

1 tháng 9 2021

a. (x - 2)(x + 2) - (x - 3)2 = 9

<=> x2 - 22 - (x - 3)2 = 32

<=> x - 2 - (x - 3) = 3

<=> x - 2 - x + 3 = 3

<=> x - x = 3 - 3 + 2

<=> 0 = 2 (Vô lí)

Vậy nghiệm của PT là S = \(\varnothing\)

b: Ta có: \(\left(x-1\right)\left(x^2+1\right)-\left(x+1\right)\left(x^2-x+1\right)=x\left(2-x\right)\)

\(\Leftrightarrow x^3+x-x^2-1-x^3-1=2x-x^2\)

\(\Leftrightarrow-x^2+x-2-2x+x^2=0\)

\(\Leftrightarrow-x=2\)

hay x=-2

11 tháng 8 2023

\(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\left(1\right)\)

a) A xác định \(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

\(\left(1\right)\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x\left(x-1\right)}\right)\)

\(\Rightarrow A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x+1}\)

b) Để \(A=-\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{x^2}{x+1}=-\dfrac{1}{2}\left(x\ne-1\right)\)

\(\Leftrightarrow2x^2=-\left(x+1\right)\)

\(\Leftrightarrow2x^2+x+1=0\)

\(\Delta=1-8=-7< 0\)

Nên phương trình trên vô nghiệm \(\left(x\in\varnothing\right)\)

c) Để \(A< 1\) 

\(\Leftrightarrow\dfrac{x^2}{x+1}< 1\)

\(\Leftrightarrow x^2< x+1\left(x\ne-1\right)\)

\(\Leftrightarrow x^2-x-1< 0\)

\(\Leftrightarrow x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}< 0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2< \dfrac{5}{4}\)

\(\Leftrightarrow-\dfrac{\sqrt[]{5}}{2}< x-\dfrac{1}{2}< \dfrac{\sqrt[]{5}}{2}\)

\(\Leftrightarrow\dfrac{-\sqrt[]{5}+1}{2}< x< \dfrac{\sqrt[]{5}+1}{2}\)

d) Để A nguyên

\(\Leftrightarrow\dfrac{x^2}{x+1}\in Z\)

\(\Leftrightarrow x^2⋮x+1\)

\(\Leftrightarrow x^2-x\left(x+1\right)⋮x+1\)

\(\Leftrightarrow x^2-x^2+x⋮x+1\)

\(\Leftrightarrow x⋮x+1\)

\(\Leftrightarrow x-x-1⋮x+1\)

\(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\in\left\{-1;1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\left(x\in Z\right)\)

11 tháng 8 2023

!ERROR 404!

20 tháng 12 2021

a: \(A=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\)

30 tháng 11 2023

a (x + 2) - x(x + 3) = 2

x + 2 - x(x + 3) - 2 = 0

x + x(x + 3) = 0

x(1 + x + 3) = 0

x(x + 4) = 0

x = 0 hoặc x + 4 = 0

*) x + 4 = 0

x = -4

Vậy x = -4; x = 0

b) (x + 2)(x - 2) - (x + 1)² = 7

x² - 4 - x² - 2x - 1 = 7

-2x - 5 = 7

-2x = 7 + 5

-2x = 12

x = 12 : (-2)

x = -6

c) 6x² - (2x + 1)(3x - 2) = 1

6x² - 6x² + 4x - 3x + 2 = 1

x + 2 = 1

x = 1 - 2

x = -1

d) (x + 2)(x + 3) - (x - 2)(x + 1) = 2

x² + 3x + 2x + 6 - x² - x + 2x + 2 = 2

6x + 8 = 2

6x = 2 - 8

6x = -6

x = -6 : 6

x = -1

e) 6(x - 1)(x + 1) - (2x - 1)(3x + 2) + 3 = 0

6x² - 6 - 6x² - 4x + 3x + 2 + 3 = 0

-x - 1 = 0

x = -1

AH
Akai Haruma
Giáo viên
27 tháng 6 2023

Lời giải:

a. $2x^2+3(x-1)(x+1)=5x(x+1)$

$\Leftrightarrow 2x^2+3x^2-3=5x^2+5x$

$\Leftrightarrow 5x^2-3=5x^2+5x$
$\Leftrightarrow 5x=-3$

$\Leftrightarrow x=\frac{-3}{5}$

b.

PT $\Leftrightarrow (-5x^2-2x+16)+4(x^2-x-2)=4-x^2$

$\Leftrightarrow -x^2-6x+8=4-x^2$

$\Leftrightarrow -6x+8=4$
$\Leftrightarrow -6x=-4$

$\Leftrightarrow x=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
27 tháng 6 2023

c.

PT $\Leftrightarrow 4(x^2+4x-5)-(x^2+7x+10)=3(x^2+x-2)$

$\Leftrightarrow 4x^2+16x-20-x^2-7x-10=3x^2+3x-6$

$\Leftrightarrow 3x^2+9x-30=3x^2+3x-6$

$\Leftrightarrow 6x=24$

$\Leftrightarrow x=4$