Biết nghiệm dương nhỏ nhất của phương trình : \(\sqrt{3}sin2x+cos2x=1-4sinx\) có dạng \(\frac{a\pi}{b};a,b\in N^{\cdot}\) , \(\frac{a}{b}\) là phân số tối giản . Giá trị a+b bằng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình \(sin\left( {x + \frac{\pi }{6}} \right) - sin2x = 0\;\)
\(\begin{array}{l} \Leftrightarrow sin\left( {x + \frac{\pi }{6}} \right) = sin2x.\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{6} = 2x + k2\pi \\x + \frac{\pi }{6} = \pi - 2x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
Với \(x = \frac{\pi }{6} + k2\pi \) có nghiệm dương bé nhất là \(x = \frac{\pi }{6}\) khi \(k = 0\).
Với \(x = \frac{{5\pi }}{{18}} + k\frac{{2\pi }}{3}\) có nghiệm dương bé nhất là \(x = \frac{{5\pi }}{{18}}\) khi \(k = 0\).
Vậy nghiệm dương bé nhất của phương trình đã cho là \(x = \frac{\pi }{6}\).
Phương trình:
3 sin 2 x + 2 sin x cos x - cos 2 x = 0 (*).
cos x = 0 ⇒ sin 2 x = 1 không phải là nghiệm của phương trình (*).
cos x ≠ 0 . Ta có:
Nghiệm nguyên dương nhỏ nhất của phương trình là x 0 ∈ 0 ; π 2
Chọn C.
Đáp án A
Ta có 2 sin x cos x - 2 cos 2 x - 1 + sin x - cos x = 1
⇔ 2 cos x sin x - cos x + sin x - cos x = 0 ⇔ [ tan x = 1 ⇔ x = π 4 + k π cos x = - 1 2 = cos 2 π 3 ⇔ x = ± 2 π 3 + k 2 π .
Pt \(\Leftrightarrow2sin\left(2x+\dfrac{\pi}{3}\right)=\sqrt{3}\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(x\in\left(0;\dfrac{\pi}{2}\right)\)\(\Rightarrow\left[{}\begin{matrix}0< \dfrac{\pi}{6}+k\pi< \dfrac{\pi}{2}\\0< k\pi< \dfrac{\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{6}< k< \dfrac{1}{3}\\0< k< \dfrac{1}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Leftrightarrow\left[{}\begin{matrix}k=0\\k\in\varnothing\end{matrix}\right.\)
Vậy có 1 nghiệm thỏa mãn
\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt[]{3}sin2x-cos2x\)
\(\Leftrightarrow4.\left(-\dfrac{1}{2}\right)\left[sin\left(x+\dfrac{\pi}{3}+x-\dfrac{\pi}{6}\right)+sin\left(x+\dfrac{\pi}{3}-x+\dfrac{\pi}{6}\right)\right]=m^2+2.\left[\dfrac{\sqrt[]{3}}{2}.sin2x-\dfrac{1}{2}.cos2x\right]\)
\(\Leftrightarrow2\left[sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(2x-\dfrac{\pi}{6}\right)\right]=m^2+2\)
\(\Leftrightarrow2.2sin2x.cos\dfrac{\pi}{6}=m^2+2\)
\(\Leftrightarrow2.2sin2x.\dfrac{\sqrt[]{3}}{2}=m^2+2\)
\(\Leftrightarrow2\sqrt[]{3}sin2x.=m^2+2\)
\(\Leftrightarrow sin2x.=\dfrac{m^2+2}{2\sqrt[]{3}}\)
Phương trình có nghiệm khi và chỉ khi
\(\left|\dfrac{m^2+2}{2\sqrt[]{3}}\right|\le1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m^2+2}{2\sqrt[]{3}}\ge-1\\\dfrac{m^2+2}{2\sqrt[]{3}}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge-2\left(1+\sqrt[]{3}\right)\left(luôn.đúng\right)\\m^2\le2\left(1-\sqrt[]{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow-\sqrt[]{2\left(1-\sqrt[]{3}\right)}\le m\le\sqrt[]{2\left(1-\sqrt[]{3}\right)}\)
\(2\sqrt{3}sinx.cosx+1-2sin^2x=1-4sinx\)
\(\Leftrightarrow\sqrt{3}sinx.cosx-sin^2x+2sinx=0\)
\(\Leftrightarrow sinx\left(\sqrt{3}cosx-sinx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
Vậy nghiệm dương nhỏ nhất \(x=\frac{5\pi}{6}\Rightarrow a+b=11\)
Dạ ngay dấu tương đương thứ 2 thì trong ngoặc phải là +2 thì nhân vào mới là +2sinx chứ ạ