K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

Hình thang ABCD nên \(\hept{\begin{cases}AC//BD\\AB//CD\end{cases}}\)Vì AB//CD rồi nên không thể nói AB vuông với CD được bạn ơi?

1 tháng 9 2019

Dũng Lê Trí 
Chuẩn

Đề sai rồi bạn

13 tháng 11 2021

a, Vì H,E đx nhau qua DF nên tam giác HDE cân tại D và có đường cao DF cũng là phân giác

Tương tự ta có tam giác DBE cân tại D có đường cao DC cũng là phân giác

Do đó \(\widehat{HDB}=\widehat{HDE}+\widehat{EDB}=2\left(\widehat{FDE}+\widehat{EDC}\right)=2\cdot90^0=180^0\)

Do đó B,H,D thẳng hàng

Mà \(DH=DE=DB\) (DHE và DEB cân tại D)

Vậy D là trung điêm BH

29 tháng 10 2018

Bài 1:

Điểm I ở đâu ra vậy bạn?

Bài 2 :

Điểm E ở đâu ra vậy bạn ????????

31 tháng 10 2022

Bài 1:

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

21 tháng 2 2020

A B C D G H F E K O

Gọi K là giao điểm của AB và EF 

O là giao điểm của AC và BD => OB = OD vì ABCD là hình chữ nhật

Ta có: EK // OB => \(\frac{EK}{OB}=\frac{AE}{AO}\)

          EF//OD => \(\frac{EF}{OD}=\frac{AE}{AO}\)

=> \(\frac{EK}{OB}=\frac{EF}{OD}\) mà OD = OB 

=> EK = EF mặt khác EH = EB ( H đối xứng với B qua E )

=> KBFH là hình bình hành 

=> KB //=HF  ( 1)

Ta lại có: KB //GD ( vì G thuộc DC ; AB //DC ; ABCD là hình chữ nhật )

và GK // BD ( giả thiết )

=> GKBD là hình bình hành

=> KB // = GD ( 2)

Từ ( 1) và (2) => HF // = GD 

=> HFDG là hình bình hành có: ^FDG = 90 độ ( kề bù ^ADC = 90 độ )

=> HFDG là hình chữ nhật 

=> HD = FG ( hai đường chéo bằng nhau)

23 tháng 8 2016

Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.

Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).

Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.

Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).

Khi đó ta có:

 \(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)

Vậy ta đã chứng minh xong bài toán.

24 tháng 9 2017

Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC