Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Vì H,E đx nhau qua DF nên tam giác HDE cân tại D và có đường cao DF cũng là phân giác
Tương tự ta có tam giác DBE cân tại D có đường cao DC cũng là phân giác
Do đó \(\widehat{HDB}=\widehat{HDE}+\widehat{EDB}=2\left(\widehat{FDE}+\widehat{EDC}\right)=2\cdot90^0=180^0\)
Do đó B,H,D thẳng hàng
Mà \(DH=DE=DB\) (DHE và DEB cân tại D)
Vậy D là trung điêm BH
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình thang ABCD nên \(\hept{\begin{cases}AC//BD\\AB//CD\end{cases}}\)Vì AB//CD rồi nên không thể nói AB vuông với CD được bạn ơi?
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Điểm I ở đâu ra vậy bạn?
Bài 2 :
Điểm E ở đâu ra vậy bạn ????????
![](https://rs.olm.vn/images/avt/0.png?1311)
Triangle poly1: Polygon A, B, C Segment c: Segment [A, B] of Triangle poly1 Segment a: Segment [B, C] of Triangle poly1 Segment b: Segment [C, A] of Triangle poly1 Segment j: Segment [A, G] Segment k: Segment [B, H] Segment l: Segment [I, C] Segment n: Segment [H, G] Segment q: Segment [O, I] Segment r: Segment [O, G] Segment f_1: Segment [A, D] Segment g_1: Segment [O, K] Segment m: Segment [A, H] Segment p: Segment [B, G] Segment s: Segment [E, D] Segment h_1: Segment [H, O] A = (6.37, 4.19) A = (6.37, 4.19) A = (6.37, 4.19) B = (3.15, -2.53) B = (3.15, -2.53) B = (3.15, -2.53) C = (15.4, -3.36) C = (15.4, -3.36) C = (15.4, -3.36) Point F: Midpoint of c Point F: Midpoint of c Point F: Midpoint of c Point D: Midpoint of a Point D: Midpoint of a Point D: Midpoint of a Point E: Midpoint of b Point E: Midpoint of b Point E: Midpoint of b O = (10.6, -2.67) O = (10.6, -2.67) O = (10.6, -2.67) Point I: Intersection point of f, i Point I: Intersection point of f, i Point I: Intersection point of f, i Point G: Intersection point of d, g Point G: Intersection point of d, g Point G: Intersection point of d, g Point H: Intersection point of e, h Point H: Intersection point of e, h Point H: Intersection point of e, h Point K: Intersection point of j, k Point K: Intersection point of j, k Point K: Intersection point of j, k Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1 Point J: Intersection point of f_1, g_1
a) DE là đường trung bình tam giác ABC=>DE//AB và DE=\(\frac{1}{2}\)AB
DE là đường trung bình tam giác OGH=>DE//GH và DE=\(\frac{1}{2}\)GH
=> AB//GH và AB=GH => AHGB là hình bình hành => AG và BH cắt nhau tại trung điểm mỗi đường
CM tương tự: AIGC là hình bình bình hành => AG,IC cắt nhau tại trung điểm mỗi đường
IBCH là hình bình hành => IC,BH cắt nhau tại trung điểm mỗi đường
=> AG,BH,CI đồng quy.
b) K trung điểm AG => OK là trung tuyến tam giác AGO
Mà AD là trung tuyến tam giác AGO ( DG=DO do đối xứng tâm )
=> Giao điểm J của hai đường là trọng tâm tam giác AGO
=> JD =\(\frac{1}{3}\)AD
Mà AD là trung tuyến tam giác ABC
=> J là trọng tâm tam giác ABC
Vậy OK luôn đi qua điểm cố định là trọng tâm tam giác ABC.