Tìm gtln, gtnn của hs y=(3-sinx)^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)
Min và max lần lượt là 3 và 1
3.
\(cos\left(x-\frac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
8.
\(y=\frac{1}{2}+\frac{1}{2}cos2x+2cos2x=\frac{1}{2}+\frac{5}{2}cos2x\le\frac{1}{2}+\frac{5}{2}.1=3\)
15.
Nó đi qua vô số điểm nên ko có 4 đáp án để chọn thì ko ai có thể trả lời câu này cho bạn cả
18.
\(y=\frac{sinx+2cosx+1}{sinx+cosx+2}\Leftrightarrow y.sinx+y.cosx+2y=sinx+2cosx+1\)
\(\Leftrightarrow\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)
\(\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\)
\(\Leftrightarrow2y^2+2y-4\le0\Rightarrow-2\le y\le1\)
\(\Rightarrow y_{max}=1\)
8.
\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)
Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)
\(y_{min}=-2;y_{max}=3\)
10.
\(y=2-\left(cosx+1\right)^2\le2\)
\(y_{max}=2\)
14.
Hàm tuần hoàn với chu kì \(T=\pi\)
\(y=1-2\sin^2x-\sin x+3=-2\sin^2x-\sin x+4\)
\(\sin x=t;t\in\left[-1;1\right]\)
Xét hàm f(t) trên [-1;1]
\(f\left(-1\right)=-2+1+4=3\)
\(f\left(1\right)=-2-1+4=1\)
\(f\left(-\frac{1}{4}\right)=-2.\frac{1}{16}+\frac{1}{4}+4=\frac{33}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}y_{max}=\frac{33}{8};"="\Leftrightarrow\sin x=-\frac{1}{4}\Rightarrow x=...\\y_{min}=1;"="\Leftrightarrow\sin x=1\end{matrix}\right.\)
-1<=sin x<=1
=>-1<=-sin x<=1
=>2<=-sin x+3<=4
=>4<=(3-sin x)^2<=16
=>5<=y<=17
y min=5 khi 3-sin x=2
=>sin x=1
=>x=pi/2+k2pi
y max=17 khi 3-sin x=4
=>sin x=-1
=>x=-pi/2+k2pi
8.
\(y=\left(cosx+1\right)^2-1\ge-1\Rightarrow y_{min}=-1\)
\(y=\left(cosx-1\right)\left(cosx+3\right)+3\le3\Rightarrow y_{max}=3\)
10.
\(y=2-\left(cosx+1\right)^2\le2\Rightarrow y_{max}=2\)
14.
Hàm tuần hoàn với chu kì \(T=\pi\)
15.
Đáp án A đúng
20.
\(-1\le sin\left(\frac{x}{2}+\frac{\pi}{7}\right)\le1\Rightarrow-5\le y\le-1\)
\(y_{max}=-1\) ; \(y_{min}=-5\)
a.
\(y=sinx.cosx+1=\dfrac{1}{2}sin2x+1\)
\(-1\le sin2x\le1\Rightarrow\dfrac{1}{2}\le y\le\dfrac{3}{2}\)
\(y_{min}=\dfrac{1}{2}\) khi \(sin2x=-1\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
b.
\(y=2\left(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx\right)-2=2.sin\left(x-\dfrac{\pi}{6}\right)-2\)
\(-1\le sin\left(x-\dfrac{\pi}{6}\right)\le1\Rightarrow-4\le y\le0\)
\(y_{min}=-4\) khi \(sin\left(x-\dfrac{\pi}{6}\right)=-1\Rightarrow x=-\dfrac{\pi}{3}+k2\pi\)
\(y_{max}=0\) khi \(sin\left(x-\dfrac{\pi}{6}\right)=1\Rightarrow x=\dfrac{2\pi}{3}+k2\pi\)
1/
\(y=\frac{x^2+5}{x-3}\Rightarrow y'=\frac{2x\left(x-3\right)-\left(x^2+5\right)}{\left(x-3\right)^2}=\frac{x^2-6x-5}{\left(x-3\right)^2}< 0\) ; \(\forall x\in\left[3;6\right]\)
Hàm nghịch biến trên đoạn đã cho nên \(y_{min}=y\left(6\right)=\frac{41}{3}\)
2.
\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=2sin\left(x+\frac{\pi}{3}\right)\)
\(\Rightarrow y'=2cos\left(x+\frac{\pi}{3}\right)=0\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+k\pi\Rightarrow x=\frac{\pi}{6}\)
\(y\left(0\right)=\sqrt{3}\) ; \(y\left(\pi\right)=-\sqrt{3}\) ; \(y\left(\frac{\pi}{6}\right)=2\) \(\Rightarrow y_{max}=y\left(\frac{\pi}{6}\right)=2\)
3.
ĐKXĐ: \(x\le1\)
Đặt \(\sqrt{1-x}=t\ge0\Rightarrow x=1-t^2\)
Pt trở thành: \(1-t^2+t=m\Leftrightarrow-t^2+t+1=m\)
Xét \(f\left(t\right)=-t^2+t+1\Rightarrow f'\left(t\right)=-2t+1=0\Rightarrow t=\frac{1}{2}\)
\(f\left(\frac{1}{2}\right)=\frac{11}{8}\Rightarrow f\left(t\right)\le\frac{11}{8}\Rightarrow m\le\frac{11}{8}\)
\(y=sin^2x-6sinx+10\)
\(y=sin^2x-6sinx-7+17=\left(sinx+1\right)\left(sinx-7\right)+17\le17\)
\(y_{max}=17\) khi \(sinx=-1\)
\(y=sin^2x-6sinx+5+5=\left(1-sinx\right)\left(5-sinx\right)+5\ge5\)
\(y_{min}=5\) khi \(sinx=1\)
cái chỗ tìm ymax,min. X thuộc R x mình phải ngồi bấm từ giá trị để coi x nào là R hả, em thấy làm vậy hơi mất tg ko biết có tip nào nhanh hơn ko ạ