K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

-1<=sin x<=1

=>-1<=-sin x<=1

=>2<=-sin x+3<=4

=>4<=(3-sin x)^2<=16

=>5<=y<=17

y min=5 khi 3-sin x=2

=>sin x=1

=>x=pi/2+k2pi

y max=17 khi 3-sin x=4

=>sin x=-1

=>x=-pi/2+k2pi

NV
7 tháng 9 2020

2.

\(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)

Min và max lần lượt là 3 và 1

3.

\(cos\left(x-\frac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

8.

\(y=\frac{1}{2}+\frac{1}{2}cos2x+2cos2x=\frac{1}{2}+\frac{5}{2}cos2x\le\frac{1}{2}+\frac{5}{2}.1=3\)

15.

Nó đi qua vô số điểm nên ko có 4 đáp án để chọn thì ko ai có thể trả lời câu này cho bạn cả

18.

\(y=\frac{sinx+2cosx+1}{sinx+cosx+2}\Leftrightarrow y.sinx+y.cosx+2y=sinx+2cosx+1\)

\(\Leftrightarrow\left(y-1\right)sinx+\left(y-2\right)cosx=1-2y\)

\(\left(y-1\right)^2+\left(y-2\right)^2\ge\left(1-2y\right)^2\)

\(\Leftrightarrow2y^2+2y-4\le0\Rightarrow-2\le y\le1\)

\(\Rightarrow y_{max}=1\)

NV
26 tháng 9 2020

\(y=sin^2x-6sinx+10\)

\(y=sin^2x-6sinx-7+17=\left(sinx+1\right)\left(sinx-7\right)+17\le17\)

\(y_{max}=17\) khi \(sinx=-1\)

\(y=sin^2x-6sinx+5+5=\left(1-sinx\right)\left(5-sinx\right)+5\ge5\)

\(y_{min}=5\) khi \(sinx=1\)

27 tháng 7 2023

cái chỗ tìm ymax,min. X thuộc R x mình phải ngồi bấm từ giá trị để coi x nào là R hả, em thấy làm vậy hơi mất tg ko biết có tip nào nhanh hơn ko ạ

 

NV
15 tháng 7 2020

4.

\(-1\le sinx\le1\Rightarrow\sqrt{2}\le\sqrt{sinx+3}\le2\)

\(\Rightarrow\sqrt{2}-1\le y\le1\)

12.

ĐKXĐ: \(sinx+1\ne0\Rightarrow sinx\ne-1\Rightarrow x\ne-\frac{\pi}{2}+k2\pi\)

20.

\(y=tanx\) ko xác định khi \(cosx=0\Leftrightarrow x=\frac{\pi}{2}+k\pi\)

22.

\(y_{min}=y\left(\frac{\pi}{4}\right)=cos\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

NV
3 tháng 10 2020

1.

\(\Leftrightarrow cosx=\frac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=-\frac{\pi}{6}+n2\pi\end{matrix}\right.\)

Do \(0< x< 2\pi\Rightarrow\left\{{}\begin{matrix}0< \frac{\pi}{6}+k2\pi< 2\pi\\0< -\frac{\pi}{6}+n2\pi< 2\pi\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\frac{1}{12}< k< \frac{11}{12}\\\frac{1}{12}< n< \frac{13}{12}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=0\\n=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}\\x=\frac{11\pi}{6}\end{matrix}\right.\) \(\Rightarrow\sum x=\frac{\pi}{6}+\frac{11\pi}{6}=2\pi\)

2.

\(-\frac{\pi}{4}\le x\le\frac{\pi}{3}\Rightarrow-\frac{\sqrt{2}}{2}\le sinx\le\frac{\sqrt{3}}{2}\)

\(\Rightarrow0\le\left|sinx\right|\le\frac{\sqrt{3}}{2}\)

\(y_{max}=\frac{\sqrt{3}}{2}\) khi \(x=\frac{\pi}{3}\)

\(y_{min}=0\) khi \(x=0\)

3 tháng 10 2020

Sao suy ra cái dấu suy ra thứ nhất đc vậy ạ

NV
15 tháng 9 2020

8.

\(y=cos^2x+2\left(2cos^2x-1\right)=5cos^2x-2\)

Do \(0\le cos^2x\le1\Rightarrow-2\le y\le3\)

\(y_{min}=-2;y_{max}=3\)

10.

\(y=2-\left(cosx+1\right)^2\le2\)

\(y_{max}=2\)

14.

Hàm tuần hoàn với chu kì \(T=\pi\)

27 tháng 9 2020

\(y=1-2\sin^2x-\sin x+3=-2\sin^2x-\sin x+4\)

\(\sin x=t;t\in\left[-1;1\right]\)

Xét hàm f(t) trên [-1;1]

\(f\left(-1\right)=-2+1+4=3\)

\(f\left(1\right)=-2-1+4=1\)

\(f\left(-\frac{1}{4}\right)=-2.\frac{1}{16}+\frac{1}{4}+4=\frac{33}{8}\)

\(\Rightarrow\left\{{}\begin{matrix}y_{max}=\frac{33}{8};"="\Leftrightarrow\sin x=-\frac{1}{4}\Rightarrow x=...\\y_{min}=1;"="\Leftrightarrow\sin x=1\end{matrix}\right.\)

NV
4 tháng 8 2021

Đây là 1 lời giải sai em

Đơn giản vì phương trình gốc không thể giải được

5 tháng 8 2021

Em cảm ơn ạ