K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2020

2x3 + x - 4x2 - 2 = 0

⇔ ( 2x3 - 4x2 ) + ( x - 2 ) = 0

⇔ 2x2( x - 2 ) + 1( x - 2 ) = 0

⇔ ( x - 2 )( 2x2 + 1 ) = 0

⇔ \(\orbr{\begin{cases}x-2=0\\2x^2+1=0\end{cases}}\)

+) x - 2 = 0 ⇔ x = 2

+) 2x2 + 1 = 0

⇔ 2x2 = -1 ( vô lí do 2x2 ≥ 0 ∀ x )

Vậy phương trình có nghiệm duy nhất là x = 2

15 tháng 9 2020

\(2x^3+x-4x^2-2=0\)

\(\Leftrightarrow x\left(2x^2+1\right)-2\left(2x^2+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x^2+1=0\left(loai\right)\end{cases}\Leftrightarrow}x=2\)

19 tháng 10 2021

\(b,\Rightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Rightarrow5\left(x+2\right)=0\\ \Rightarrow x=-2\\ c,\Rightarrow2x\left(x^2-2x+1\right)=0\\ \Rightarrow2x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ d,\Rightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Rightarrow3x\left(-x-2\right)=0\\ \Rightarrow-3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

19 tháng 10 2021

a)thiếu dấu

b)(x+2)2 -(x+2)(x-3)=0

(x+2)(x+2-x+3)=0

(x+2)5=0

x+2=0

x=-2

c)2x3-4x2+2x=0

2x(x2-2x+1)=0

2x(x-1)2

suy ra 2 trường hợp

x=0

x-1=0=>x=1

d)(x-1)2-(2x+1)2=0

(x-1-2x-1)(x-1+2x+1)=0

(x-2)3x=0

x=0

x=2

 

 

 

18 tháng 8 2023

\(x^6+2x^3+1=0\)

\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)

\(\Leftrightarrow\left(x^3+1\right)^2=0\)

\(\Leftrightarrow x^3=\left(-1\right)^3\)

\(\Leftrightarrow x=-1\)

___________

\(x\left(x-5\right)=4x-20\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

_____________

\(x^4-2x^2=8-4x^2\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

_______________

\(\left(x^3-x^2\right)-4x^2+8x-4\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b: 4x^2-20x+25=(x-3)^2

=>(2x-5)^2=(x-3)^2

=>(2x-5)^2-(x-3)^2=0

=>(2x-5-x+3)(2x-5+x-3)=0

=>(3x-8)(x-2)=0

=>x=8/3 hoặc x=2

c: x+x^2-x^3-x^4=0

=>x(x+1)-x^3(x+1)=0

=>(x+1)(x-x^3)=0

=>(x^3-x)(x+1)=0

=>x(x-1)(x+1)^2=0

=>\(x\in\left\{0;1;-1\right\}\)

d: 2x^3+3x^2+2x+3=0

=>x^2(2x+3)+(2x+3)=0

=>(2x+3)(x^2+1)=0

=>2x+3=0

=>x=-3/2

a: =>x^2(5x-7)-3(5x-7)=0

=>(5x-7)(x^2-3)=0

=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)

12 tháng 9 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

14 tháng 6 2019

2x4 ,4 là mũ hay số vậy

16 tháng 6 2019

thôi không cần lm nx học xong rồi

a: P(x)=6x^3-4x^2+4x-2

Q(x)=-5x^3-10x^2+6x+11

M(x)=x^3-14x^2+10x+9

b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)

=10x^4-11x^3-5x^2-15x+21

 

Q(x)=2P(x)

=>2x^3-4x^2+5x=2x^3-4x^2+6

=>5x=6

=>x=6/5

8 tháng 11 2018

* f(x) = x2 + 2x3− 7x5 − 9 − 6x7 + x3 + x2 + x5 − 4x2 + 3x7

= (x2+ x2 – 4x2)+ (2x3 + x3 ) - (7x5 - x5 ) – 9 – (6x7 – 3x7)

= - 2x2 + 3x3 – 6x5 – 9 – 3x7

Sắp xếp theo thứ tự tăng của biến: f(x) = −9 − 2x2 + 3x3 − 6x5 − 3x7

* g(x) = x5 + 2x3 − 5x8 − x7 + x3 + 4x2 -5x7 + x4 − 4x2 − x6 – 12

= x5+ (2x3 + x3) - 5x8 – (x7+ 5x7) + (4x2 – 4x2 ) + x4 – x6 – 12

= x5 + 3x3 – 5x8 – 6x7 + x4 – x6 – 12

Sắp xếp theo thứ tự tăng của biến: g(x) = −12 + 3x3 + x4 + x5 – x6 − 6x7− 5x8

* h(x) = x + 4x5 − 5x6 − x7 + 4x3 + x2 − 2x7 + x6 − 4x2 − 7x7 + x.

= (x+ x) +4x5 – (5x6 – x6)- (x7 + 2x7+ 7x7) + 4x3+ (x2 – 4x2)

= 2x + 4x5 - 4x6 – 10x7 + 4x3 -3x2

Sắp xếp theo thứ tự tăng của biến: h(x) = 2x − 3x2 + 4x3 + 4x5 − 4x6 − 10x7

\(\dfrac{1}{2}x^2\left(2x^3-4x^2+3\right)=x^5-2x^4+\dfrac{3}{2}x^2\)

Ta có: \(A=\left(x-2\right)\left(x^4+2x^3+4x^2+8x+16\right)\)

\(=x^4+2x^3+4x^2+8x+16\)

\(=3^4+2\cdot3^3+4\cdot3^2+8\cdot3+16\)

\(=81+54+36+24+16\)

\(=211\)

11 tháng 7 2022

khó