K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

Trả lời:

\(\sqrt{x^2-25}=\sqrt{\left(x-5\right).\left(x+5\right)}\)

                        \(=\sqrt{x-5}.\sqrt{x+5}\)

Học tốt

a: TH1: x>=2

A=x+x-2=2x-2

TH2: x<2

A=x+2-x=2

b: TH1: x>=3

A=x-3-x=-3

TH2: x<3

A=3-x-x=-2x+3

c: TH1: x>=1

C=x-x+1=1

TH2: x<1

C=x+x-1=2x-1

d: TH1: m>=3

C=m-3-2m=-3-m

TH2: m<3

C=-m+3-2m=-3m+3

e: TH1: m>=1

E=m-m+1=1

TH2: m<1

E=m+m-1=2m-1

NV
23 tháng 8 2021

\(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)

\(=\left|\sqrt{3}-1\right|\left(\sqrt{3}+1\right)=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)

\(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}-5}-\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\left(\sqrt{x}+2\right)=5-2=3\)

a: Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)

\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

=3-1

=2

b: Ta có: \(\dfrac{x-25}{\sqrt{x}-5}-\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\sqrt{x}+5-\sqrt{x}-2\)

=3

13 tháng 9 2023

Thiếu soát gì mog bạn thông cảm :]

loading...

loading...

17 tháng 9 2023

a chj Lê quay lại gòi :DDD

18 tháng 11 2016

Ta có 

\(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=25-x^2-15+x^2=10\)

\(\Rightarrow\sqrt{25-x^2}+\sqrt{15-x^2}=5\)

29 tháng 3 2017

Ta có:

\(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=25-x^2-\left(15-x^2\right)=10\)

\(\Rightarrow y=\sqrt{25-x^2}+\sqrt{15-x^2}=\dfrac{10}{2}=5\)

24 tháng 8 2021

Chỗ căn bị thiếu là √x nha.

Ta có: \(\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\dfrac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5}{\sqrt{x}+3}\)

7 tháng 7 2021

đK: \(x\ge0;x\ne25;x\ne9\)

\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right]:\left[\dfrac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right]\)

\(=\left[\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right]:\dfrac{25-x-\left(x-9\right)+\left(x-25\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-\sqrt{x}-3}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}=\dfrac{5}{\sqrt{x}+3}\)

ĐKXĐ: \(-5\le x\le5\)

Đề bài tương đương: \(\sqrt{\left(5-x\right)\left(5+x\right)}+x\sqrt{\left(5-x\right)\left(5+x\right)}-\left(5-x\right)=0\)

\(\Leftrightarrow\sqrt{5-x}\left(\sqrt{5+x}+x\sqrt{5+x}-\sqrt{5-x}\right)=0\)

+) \(\sqrt{5-x}=0\Leftrightarrow x=5\)

+) \(\sqrt{5+x}+x\sqrt{5+x}=\sqrt{5-x}\ge0\Rightarrow\sqrt{5+x}\left(1+x\right)\ge0\Leftrightarrow x\ge-1\)

Bình phương 2 vế của phương trình:

\(\Rightarrow\left(5+x\right)+x^2\left(5+x\right)+2x\left(5+x\right)=5-x\)

\(\Leftrightarrow x^3+7x^2+12x=0\Leftrightarrow x\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow x=0;x=-3;x=-4\)Chỉ  nhận \(x=0\)vì \(x\ge-1\)

\(\Rightarrow S=\left\{0;5\right\}\)

\(P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{5}{\sqrt{x}+5}\)

28 tháng 2 2022

\(P=\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{2\sqrt{x}}{\sqrt{x}-5}-\dfrac{3x+25}{x-25}\\ \Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{3x+25}{\left(\sqrt{x}+5\right)}\\ \Leftrightarrow P=\dfrac{x-5\sqrt{x}+2x+10\sqrt{x}-3x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\sqrt{x}-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ \Leftrightarrow P=\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(\Leftrightarrow P=\dfrac{5}{\sqrt{x}+5}\)

13 tháng 11 2016

Ta có: \(A\cdot\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)=\left(25-x^2-15+x^2\right)=10\)

Do đó A = 10/2 = 5