Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: Tự đặt nha bạn hiền :v
Đặt: \(\sqrt{x+3}=a;\sqrt{x-2}=b\)
Phương trình đã cho tương đương với hệ:
\(\left\{{}\begin{matrix}a-b=1\\a^2-b^2=5\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=1\\\left(a+b\right)\left(a-b\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a-b=1\\a+b=5\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\sqrt{x+3}=3\\\sqrt{x-2}=2\end{matrix}\right.\)
\(\Leftrightarrow x=6\)
Vậy phương trình đã cho có duy nhất 1 nghiệm \(x=6\)
b),c) Bạn đặt và lập hệ tương tự
\(\left(\sqrt{x+5}-\sqrt{x}\right)\left(\sqrt{x+5}+\sqrt{x}\right)=\sqrt{x+5}+\sqrt{x}\)
=> \(x+5-x=M\Rightarrow M=5\)
b ) tương tự
b) N.N' = \(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right).\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=\left(25-x^2\right)-\left(15-x^2\right)=10\)
=> 2.N = 10 => N = 10:2 =5
Ta có
\(\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)=25-x^2-15+x^2=10\)
=> Số cần tìm bằng 5
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)
\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)
\(=\frac{1-\sqrt{25}}{-1}=4\)
\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)
\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)
\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)
\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)
\(=1\)
\(A=4\sqrt{x}-\frac{x+6\sqrt{x}+9}{x-9}\)
\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)
\(=\frac{4\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}-3}-\frac{\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)}\)
\(=\frac{4x-12\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-3}\)
\(=\frac{4x-13\sqrt{x}-3}{\sqrt{x}-3}\)
C.Tham khảo ở dây:Câu hỏi của Đặng Phương Thảo - Toán lớp 9 - Học toán với OnlineMath
\(B=\frac{5\sqrt{x}-\left(x-10\sqrt{x}+25\right)\left(\sqrt{x}+5\right)}{x-25}\)
\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)^2\left(\sqrt{x}+5\right)}{x-25}\)
\(=\frac{5\sqrt{x}-\left(\sqrt{x}-5\right)\left(x-25\right)}{x-25}\)
\(=\frac{5\sqrt{x}-\left(x\sqrt{x}-25\sqrt{x}-5x+125\right)}{x-25}\)
\(=\frac{5\sqrt{x}-x\sqrt{x}+25\sqrt{x}+5x-125}{x-25}\)
\(=\frac{-x\sqrt{x}+30\sqrt{x}+5x-125}{x-25}\)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bình phương 2 vế ?
a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)
\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)
\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)
\(< =>x^2-5x+6=x^2-30x+225\)
\(< =>25x-219=0\)
\(< =>x=\frac{219}{25}\)
ĐKXĐ: \(-5\le x\le5\)
Đề bài tương đương: \(\sqrt{\left(5-x\right)\left(5+x\right)}+x\sqrt{\left(5-x\right)\left(5+x\right)}-\left(5-x\right)=0\)
\(\Leftrightarrow\sqrt{5-x}\left(\sqrt{5+x}+x\sqrt{5+x}-\sqrt{5-x}\right)=0\)
+) \(\sqrt{5-x}=0\Leftrightarrow x=5\)
+) \(\sqrt{5+x}+x\sqrt{5+x}=\sqrt{5-x}\ge0\Rightarrow\sqrt{5+x}\left(1+x\right)\ge0\Leftrightarrow x\ge-1\)
Bình phương 2 vế của phương trình:
\(\Rightarrow\left(5+x\right)+x^2\left(5+x\right)+2x\left(5+x\right)=5-x\)
\(\Leftrightarrow x^3+7x^2+12x=0\Leftrightarrow x\left(x+3\right)\left(x+4\right)=0\)
\(\Leftrightarrow x=0;x=-3;x=-4\)Chỉ nhận \(x=0\)vì \(x\ge-1\)
\(\Rightarrow S=\left\{0;5\right\}\)