\(A=\sqrt{25-x^2}+\sqrt{15-x^2}\)Biết \(\sqrt{25-x^2}-\sqrt{15...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

Ta có: \(A\cdot\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)=\left(25-x^2-15+x^2\right)=10\)

Do đó A = 10/2 = 5

7 tháng 11 2016

Ta có

\(\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right)=25-x^2-15+x^2=10\)

=> Số cần tìm bằng 5

11 tháng 10 2015

\(\left(\sqrt{x+5}-\sqrt{x}\right)\left(\sqrt{x+5}+\sqrt{x}\right)=\sqrt{x+5}+\sqrt{x}\)

=> \(x+5-x=M\Rightarrow M=5\)

b ) tương tự 

11 tháng 10 2015

b) N.N' = \(\left(\sqrt{25-x^2}-\sqrt{15-x^2}\right).\left(\sqrt{25-x^2}+\sqrt{15-x^2}\right)=\left(25-x^2\right)-\left(15-x^2\right)=10\)

=> 2.N = 10 => N = 10:2 =5

17 tháng 8 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{36(x-2)}-15\sqrt{\frac{1}{25}.(x-2)}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm.

b) ĐK: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{2x-2\sqrt{2x-1}}=2$

$\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2$

$\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2$

$\Leftrightarrow |\sqrt{2x-1}-1|=2$

$\Leftrightarrow \sqrt{2x-1}-1=\pm 2$

$\Leftrightarrow \sqrt{2x-1}=3$ (chọn) hoặc $\sqrt{2x-1}=-1$

$\Rightarrow x=5$ (thỏa mãn)

3.

PT \(\left\{\begin{matrix} x+2\geq 0\\ 3x^2=(x+2)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq -2\\ 2x^2-4x-4=0\end{matrix}\right.\Rightarrow x=1\pm \sqrt{3}\)

11 tháng 6 2019

\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)

=> \(\sqrt{x^2-25}=\sqrt{x-5}\)

=>\(x^2-25=x-5\)

=>\(x^2-x=25-5=20\)

=>( đến đoạn này mình xin chịu )

11 tháng 6 2019

\(a,\sqrt{16x}=8\)

=>\(16x=8^2\)

=>\(16x=64\)

=>\(x=64:16=4\)

Vậy \(x\in\left\{4\right\}\)

\(b,\sqrt{x^2}=2x-1\)

=>\(x=2x-1\)

=>\(2x-x=1\)

=>\(x=1\)

Vậy \(x\in\left\{1\right\}\)

\(c,\sqrt{9.\left(x-1\right)}=21\)

=>\(9.\left(x-1\right)=21^2=441\)

=> \(x-1=441:9=49\)

=>\(x=49+1=50\)

Vậy \(x\in\left\{50\right\}\)

\(d,\sqrt{4\left(1-x\right)^2}-6=0\)

=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)

=> \(4\left(1-x\right)^2=6^2=36\)

=>\(\left(1-x\right)^2=36:4=9\)

=>\(1-x=\sqrt{9}=3\)

=>\(x=1-3=-2\)

Vậy \(x\in\left\{-2\right\}\)

\(g,\sqrt{9\left(2-3x\right)^2}=6\)

=> \(9.\left(2-3x\right)^2=6^2=36\)

=> \(\left(2-3x\right)^2=36:9=4\)

=> \(2-3x=\sqrt{4}=2\)

=>\(3x=2-2=0\)

=>\(x=0:3=0\)

Vậy \(x\in\left\{0\right\}\)

( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )

7 tháng 9 2017

do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)

voi dk \(x\ge-1\) ta co 

\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)

b,\(\sqrt{4x^2-20x+25}+2x=5\)

\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)

    \(\Leftrightarrow\left|2x-5\right|+2x=5\)

th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)

th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)

\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)

kl \(x\le\frac{5}{2}\)

c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)

d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)

 =\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)

ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

dau = xay ra \(\Leftrightarrow x=-1\)

10 tháng 7 2015

\(a,\sqrt{25x^2}=10\)

\(\sqrt{\left(5x\right)^2}=10\)

\(5x=10\)

\(x=2\)

 

1 tháng 4 2016

b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\)     ĐKXĐ: x>=1,x>=-1

<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

<=>x=+-4

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-