Chứng minh rằng tổng của một phân số dương với nghịch đảo của nó thì không nhỏ hơn 2
Chú ý : Bài này dành cho các bạn lớp 6 nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nói thật thì đó là toán lớp 8, lớp 9 chứ k phải lớp 6
gọi phân số đó là a/b, vì phân số dương => a.b dương. Ta phải đi chứng minh a/b+b/a lớn hơn hoặc bằng 2
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-ab-ab+b^2}{ab}+2=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}+2\)
\(=\frac{\left(a-b\right)^2}{ab}+2\ge2\)(vì (a-b)^2 lớn hơn hoặc bằng 0 và ab>0 => phân số đầu tiên không âm, suy ra tổng không nhỏ hơn 2)
Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik
a. Gọi phân số cần tìm là \(\frac{a}{b}\)
\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)
Theo bài ra, ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì (a-b)2 chắc chắn lớn hơn hoặc bằng 0
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.
Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.
Đặt b = a + m (m ∈ Z, m ≥ 0)
Ta có:
Và (dấu "=" xảy ra khi m = 0)
Suy ra:
Từ (1) và (2) suy ra:
, (dấu "=" xảy ra khi m = 0 hay a = b )
Giả sử phân số và nghịch đảo của nó là: \(\frac{a}{b};\frac{b}{a}\)
Do phân số dương nên( a;b) cùng dấu hay a.b>0
Ta có:
\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)
Do đó: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Giả sử phân số và nghịch đảo của nó là \(\frac{a}{b};\frac{b}{a}\)
Do phân số dương nên \(a;b\)cùng dấu hay \(a.b>0\)
Ta có \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)
Do đó \(\frac{a}{b}+\frac{b}{a}\ge2\)
Gọi phân số dương là \(\dfrac{a}{b}\) . ( Không mất tính tổng quát )
Cho \(a>0,\) \(b>0\) và \(a\ge b\) . Ta có thể viết \(a=b+m\left(m\ge0\right)\) .
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}=1+\dfrac{m}{b}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}=1+\dfrac{m+b}{b+m}=2\)\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Dấu đẳng thức xảy ra khi \(a=b\left(m=0\right)\)
Gọi phân số đó là a/b (ĐK: a,b # 0, a và b cùng dấu )
a/b + b/a ≥ 2 <=> (a² + b ²)/ab ≥ 2
<=> a² - 2ab + b² ≥ 0
<=> ( a – b )² ≥ 0 ( Luôn đúng với mọi a, b)
=> Đpcm
mk giải đc nè, tick mk nha!!
Gọi phân số dương là a/b. Ko mất tính tổng quát, giả sử như: a>0, b>0 và a > b. Ta có thể viết a=b+m ( m > 0). Ta có:
a/b+b/a=b+m/b+b/m+b=1+m/b+b/b+m > 1+ m/b+m+b/b+m=1+m+b/b+m=2.
Vậy a/b+b/a > 2.
_ Gọi phân số dương là abab (a>0;b>0)
_ Số nghịch đảo của abab là baba
Điều kiện: a≥b, a=b+m(m≥0)
Theo đề bài, ta có:
abab+ baba =b+mbb+mb +bb+mbb+m =1+mbmb +bb+mbb+m
≥ 1+mb+mmb+m +bb+mbb+m =1+m+bm+bm+bm+b
≥1+1≥2abab+baba ≥2
Vậy abab +baba ≥2
Cái này có phần hẳn hoi chứ ko phải phép tính bình thường nha! Nhưng mình lười lắm nên bạn tự phát hiện nha,có gì ko hiểu mình chỉ cho