K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

nói thật thì đó là toán lớp 8, lớp 9 chứ k phải lớp 6

gọi phân số đó là a/b, vì phân số dương => a.b dương. Ta phải đi chứng minh a/b+b/a lớn hơn hoặc bằng 2

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-ab-ab+b^2}{ab}+2=\frac{a\left(a-b\right)-b\left(a-b\right)}{ab}+2\)

\(=\frac{\left(a-b\right)^2}{ab}+2\ge2\)(vì (a-b)^2 lớn hơn hoặc bằng 0 và ab>0 => phân số đầu tiên không âm, suy ra tổng không nhỏ hơn 2)

Ai chs opoke đại chiên lh mik nha! Đỏi lấy nick olm hoặc cho mik

2 tháng 9 2019

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Và Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

2 tháng 3 2017

Giả sử phân số và nghịch đảo của nó là: \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên( a;b) cùng dấu hay a.b>0

Ta có:

\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó: \(\frac{a}{b}+\frac{b}{a}\ge2\)

15 tháng 5 2017

Gọi phân số dương là \(\dfrac{a}{b}\) . ( Không mất tính tổng quát )

Cho \(a>0,\) \(b>0\)\(a\ge b\) . Ta có thể viết \(a=b+m\left(m\ge0\right)\) .

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{b+m}{b}+\dfrac{b}{b+m}=1+\dfrac{m}{b}\ge1+\dfrac{m}{b+m}+\dfrac{b}{b+m}=1+\dfrac{m+b}{b+m}=2\)\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Dấu đẳng thức xảy ra khi \(a=b\left(m=0\right)\)

1 tháng 5 2018

Gọi a/b với a > 0, b > 0 là phân số đã cho và b/a là phân số nghịch đảo của nó . Không mất tính tổng quát giả sử 0 < a ≤ b.

Đặt b = a + m (m ∈ Z, m ≥ 0)

Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6 (dấu "=" xảy ra khi m = 0)

Suy ra: Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Từ (1) và (2) suy ra:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6, (dấu "=" xảy ra khi m = 0 hay a = b )

10 tháng 6 2015

Giả sử phân số và nghịch đảo của nó là \(\frac{a}{b};\frac{b}{a}\)

Do phân số dương nên \(a;b\)cùng dấu hay \(a.b>0\)

Ta có \(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{\left(a-b\right)^2}{ab}\ge0\)

Do đó \(\frac{a}{b}+\frac{b}{a}\ge2\)

15 tháng 2 2018

Đúng rùi

22 tháng 3 2019

Ta gọi phân số đó là \(\frac{a}{b}\) ,vì phân số dương\(\Rightarrow a.b=\)dương .

Ta chúng minh \(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}=\frac{a^2-ab-ab+b^2}{ab}+2=\frac{a\left(a-b\right)-b\left(a-b\right)+2}{ab}\)

\(=\frac{\left(a-b\right)^2}{ab}+2\ge2\)

Vì :

\(\left(a-b\right)^2\ge0\) và \(ab>0\)

\(\Rightarrow\)Phân số không âm .

\(\Rightarrow\)Tổng không bé hơn 2

26 tháng 3 2016

a. Gọi phân số cần tìm là \(\frac{a}{b}\)

\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)

Theo bài ra, ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)

\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)

\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì (a-b)chắc chắn lớn hơn hoặc bằng 0

\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)

                                Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.

15 tháng 4 2016

gọi p/s đó là a/b (a;b \(\in\) Z,b \(\ne\) 0)

Ta cần c/m \(\frac{a}{b}+\frac{b}{a}\ge2\)

Nhân cả 2 vế cho ab,ta đc:

\(\left(\frac{a}{b}+\frac{b}{a}\right).ab\ge2ab\)

\(\Leftrightarrow\frac{a^2b}{b}+\frac{b^2a}{a}\ge2ab\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (dấu "=" xảy ra <=>a=b0

BĐT cuối luôn đúng,ta có đpcm

15 tháng 4 2016

Gọi phân số dương là \(\frac{a}{b}\).Không mất tích tổng quát giả sử a>0,b>0 và a\(\ge\) b.Ta có thể viết a=b+m(m\(\ge\) 0).Ta có;

\(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{m+b}\)

=\(1+\frac{m}{b}+\frac{b}{m+b}\ge1+\frac{m}{b+m}+\frac{b}{b+m}\)

=\(1+\frac{m+b}{b+m}=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

30 tháng 6 2020

 _ Gọi phân số dương là abab (a>0;b>0)

_ Số nghịch đảo của abab  là baba 

Điều kiện: a≥b, a=b+m(m≥0)

Theo đề bài, ta có:

  abab+ baba =b+mbb+mb +bb+mbb+m =1+mbmb +bb+mbb+m 

  ≥ 1+mb+mmb+m +bb+mbb+m =1+m+bm+bm+bm+b 

  ≥1+1≥2abab+baba ≥2

Vậy abab +baba ≥2

30 tháng 6 2020

Cái này có phần hẳn hoi chứ ko phải phép tính bình thường nha! Nhưng mình lười lắm nên bạn tự phát hiện nha,có gì ko hiểu mình chỉ cho