Giai phương trình
\(\sqrt{2x^2-2x+1}=2x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>-\frac{3}{2}\)
\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\left(1\right)\)
Đặt \(x+1=a>-\frac{1}{2};\sqrt{2x+3}=b>0\)
\(\Rightarrow8x^2+18x+11=a^2+b^2\)
Khi đó, phương trình (1) trở thành:
\(a+b=\frac{a^2+b^2}{2b}\Leftrightarrow2ab+2b^2=a^2+b^2\)
\(\Leftrightarrow8a^2-2ab-b^2=0\Leftrightarrow\left(2a-b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=b\\b=-4a\end{cases}}\)
Với từng trường hợp, bạn thay a,b theo như cách đặt, sau đó bình phương lên và sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để1 lấy nghiệm và so sánh với điều kiện bài toán nhé!
HỌC TỐT!^_^
\(\sqrt{x^2-2x+4}=2x-1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=2x-1\)
\(\Leftrightarrow x-2=2x-1\)
\(\Leftrightarrow x-2x=2-1\)
\(\Leftrightarrow x=-1\)
Vậy phương trình trên có tập nghiệm là S={-1}
đúng k ạ? ^^
Đk: \(\hept{\begin{cases}x\ge2\\2x+3+\sqrt{x+2}\ge0\\2x+2-\sqrt{x+2}\ge0\end{cases}}\)
Đặt \(\sqrt{x+2}=t\left(t\ge0\right)\Rightarrow x=t^2-2\)
\(pt\Leftrightarrow\sqrt{2t^2-1+t}+\sqrt{2t^2-2-t}=1+2t\)
\(\Leftrightarrow4t^2-3+2\sqrt{\left(2t^2+t-1\right)\left(2t^2-t-2\right)}=4t^2+4t+1\)
\(\Leftrightarrow\sqrt{\left(2t^2+t-1\right)\left(2t^2-t-2\right)}=2t+2\)
\(\Leftrightarrow4t^4-11t^2-9t-2=0\)
\(\Leftrightarrow\left(2t+1\right)^2\left(t-2\right)\left(t+1\right)=0\)
Do \(t\ge0\) nên t = 2. Vậy \(\sqrt{x+2}=2\Rightarrow x=2\left(tm\right)\)
Vậy pt có nghiệm x = 2.
Chúc em học tốt!
\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2x.\) Điều kiện: \(\orbr{\begin{cases}x\ge1\\x\le-2\end{cases}}\)
Do VT \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)Kết hợp với điều kiện ta có \(x\ge1\)
\(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2x.\)
\(\Leftrightarrow2\sqrt{x\left(x-1\right)}+2\sqrt{x\left(x+2\right)}=4x.\)
\(\Leftrightarrow2x-2\sqrt{x\left(x-1\right)}+2x-2\sqrt{x\left(x+2\right)}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x\left(x-1\right)}+x-1\right)+\left(x-2\sqrt{x\left(x+2\right)}+x+2\right)-1=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{x-1}\right)^2+\left(\sqrt{x}-\sqrt{x+2}\right)^2=1\)
Đặt x^2+3x=a
=>\(a+2=3\sqrt{a}\)
=>a-3 căn a+2=0
=>(căn a-1)(căn a-2)=0
=>a=1 hoặc a=4
=>x^2+3x=1 hoặc x^2+3x=4
=>(x+4)(x-1)=0 và x^2+3x-1=0
=>\(x\in\left\{1;-4;\dfrac{-3+\sqrt{13}}{2};\dfrac{-3-\sqrt{13}}{2}\right\}\)
\(\sqrt{2x^2-2x+1}=2x-1\)
<=> \(\hept{\begin{cases}2x-1\ge0\\2x^2-2x+1=4x^2-4x+1\end{cases}}\)
<=> \(\hept{\begin{cases}x\ge\frac{1}{2}\\2x^2-2x=0\end{cases}}\Leftrightarrow x=1\)
Kết luận:...