\(\sqrt{2x-1}=x^3-2x^2+2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

ĐKXĐ: \(x>-\frac{3}{2}\)

\(x+1+\sqrt{2x+3}=\frac{8x^2+18x+11}{2\sqrt{2x+3}}\left(1\right)\)

Đặt \(x+1=a>-\frac{1}{2};\sqrt{2x+3}=b>0\)

\(\Rightarrow8x^2+18x+11=a^2+b^2\)

Khi đó, phương trình (1) trở thành:

\(a+b=\frac{a^2+b^2}{2b}\Leftrightarrow2ab+2b^2=a^2+b^2\)

\(\Leftrightarrow8a^2-2ab-b^2=0\Leftrightarrow\left(2a-b\right)\left(4a+b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=b\\b=-4a\end{cases}}\)

Với từng trường hợp, bạn thay a,b theo như cách đặt, sau đó bình phương lên và sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để1 lấy nghiệm và so sánh với điều kiện bài toán nhé!

HỌC TỐT!^_^

19 tháng 7 2016

A) đặt \(\sqrt{2x^2+x+9}=a\) và \(\sqrt{2x^2-x+1}=b\)

thì pt trên trở thành \(a+b=\frac{a^2-b^2}{2}\)

 <=> \(a^2-b^2=2a+2b\)

<=> \(\left(a-b\right)\left(a+b\right)-2\left(a+b\right)=0\)

<=> \(\left(a+b\right)\left(a-b-2\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a=b+2\end{cases}}\)

đến đây bạn thay vào rùi giải nốt nha

19 tháng 7 2016

B) Đặt \(\sqrt{x-1}=a\) và \(\sqrt{x^3+x^2+x+1}=b\)

==> ab= \(\sqrt{x^4-1}\)

do đó pt trên trở thành \(a+b=ab+1\)

                              <=> \(\left(a-1\right)\left(1-b\right)=0\)

                              <=> \(\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

đến đây cũng thay vào nốt rùi giải tiếp nhé bạn

29 tháng 7 2016

Đk:  \(\hept{\begin{cases}x\ge2\\2x+3+\sqrt{x+2}\ge0\\2x+2-\sqrt{x+2}\ge0\end{cases}}\)

Đặt \(\sqrt{x+2}=t\left(t\ge0\right)\Rightarrow x=t^2-2\)

\(pt\Leftrightarrow\sqrt{2t^2-1+t}+\sqrt{2t^2-2-t}=1+2t\)

\(\Leftrightarrow4t^2-3+2\sqrt{\left(2t^2+t-1\right)\left(2t^2-t-2\right)}=4t^2+4t+1\)

\(\Leftrightarrow\sqrt{\left(2t^2+t-1\right)\left(2t^2-t-2\right)}=2t+2\)

\(\Leftrightarrow4t^4-11t^2-9t-2=0\)

\(\Leftrightarrow\left(2t+1\right)^2\left(t-2\right)\left(t+1\right)=0\)

Do \(t\ge0\) nên t = 2. Vậy \(\sqrt{x+2}=2\Rightarrow x=2\left(tm\right)\)

Vậy pt có nghiệm x = 2.

Chúc em học tốt!

15 tháng 6 2020

\(\sqrt{x^2-2x+4}=2x-1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=2x-1\)

\(\Leftrightarrow x-2=2x-1\)

\(\Leftrightarrow x-2x=2-1\)

\(\Leftrightarrow x=-1\)

Vậy phương trình trên có tập nghiệm là S={-1}

 đúng k ạ? ^^

31 tháng 7 2018

Đk : \(x\ge\frac{3}{4}\)

\(x-\sqrt{4x-3}=2\)

\(x-2=\sqrt{4x-3}\)

\(\Rightarrow\left(x-2\right)^2=\left(\sqrt{4x-3}\right)^2\)

\(x^2-4x+4=4x-3\)

\(x^2-8x+7=0\)

\(\Delta=36\Rightarrow\sqrt{\Delta}=6\)

\(\Rightarrow\)Phương trình có hai nghiệm phân biệt :

\(x_1=1\left(tm\right)\)

\(x_2=7\left(tm\right)\)

31 tháng 7 2018

\(\sqrt{5x^2-2x\sqrt{5}+1}=\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow\)\(5x^2-2x\sqrt{5}+1=6-2\sqrt{5}\)

\(\Leftrightarrow\)\(\left(x\sqrt{5}-1\right)^2=\left(\sqrt{5}-1\right)^2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x\sqrt{5}-1=\sqrt{5}-1\\x\sqrt{5}-1=1-\sqrt{5}\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=\frac{2-\sqrt{5}}{\sqrt{5}}\end{cases}}\)

Vậy...

ĐK:  \(x\ge\frac{3}{4}\)

\(x-\sqrt{4x-3}=2\)

\(\Leftrightarrow\)\(\sqrt{4x-3}=x-2\)

\(\Leftrightarrow\)\(4x-3=x^2-4x+4\)

\(\Leftrightarrow\)\(x^2-8x+7=0\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(x-7\right)=0\)

đến đây tự làm

15 tháng 6 2020

\(\sqrt{2x^2-2x+1}=2x-1\)

<=> \(\hept{\begin{cases}2x-1\ge0\\2x^2-2x+1=4x^2-4x+1\end{cases}}\)

<=> \(\hept{\begin{cases}x\ge\frac{1}{2}\\2x^2-2x=0\end{cases}}\Leftrightarrow x=1\)

Kết luận:...