K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

hỏi nhé x dương ko nếu dương thì làm theo cách này nhé bạn

áp dụng BĐT cô-si ( \(a+b\ge2\sqrt{ab}\)với a,b>0) ta có:

\(\frac{\left(x+16\right)\left(x+9\right)}{x}\ge\frac{2\sqrt{16x}.2\sqrt{9x}}{x}\)=\(\frac{2.4.\sqrt{x}.2.3.\sqrt{x}}{x}=\frac{48.x}{x}=48\)

23 tháng 4 2017

éo mk nhầm một chút bạn ạ làm lại nhé

\(\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}\)=\(x+25+\frac{144}{x}=\left(x+\frac{144}{x}\right)+25\ge\)\(2\sqrt{x.\frac{144}{x}}+25\)

=2.12+25=49(áp dụng BĐT cô-si)

dấu ''='' xảy ra khi và chỉ khi x=\(\frac{144}{x}\)hay x=12

5 tháng 11 2016

Áp dụng BĐT Cauchy : 

\(\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\ge2\sqrt{x.\frac{144}{x}}+25=49\)

Đẳng thức xảy ra khi \(x=12\)

Vậy ...............................................

8 tháng 2 2017

Cách làm của bạn Hoàng Lê Bảo Ngọc nha bạn

Mình chắc chắn luôn

Thank you

23 tháng 11 2015

\(Q=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)

 \(\ge\left(\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}\cdot\frac{y^{10}}{x^2}}-x^4y^4\right)+\left[\frac{2x^8y^8}{4}-2x^2y^2\right]-1\)

\(\ge\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-2x^2y^2-\frac{3}{2}-1\ge4\sqrt[4]{\frac{x^8y^8}{2.2.2.2}}-\frac{3}{2}-1=2x^2y^2-2x^2y^2-\frac{5}{2}=-\frac{5}{2}\)

Vậy min Q = -5/2 tại x = y = +-1 

23 tháng 11 2015

Còn cách đặt ẩn phụ thế này: 

\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}+\frac{1}{4}.2\sqrt{x^{16}.y^{16}}-\left(x^4y^4+2x^2y^2+1\right)\)\(=\frac{x^8y^8}{2}-4x^2y^2-2\)

Đặt x2y2 = t >= 0. Khi đó:

\(2Q=t^4-4t-2=\left(t^4-2t^2+1\right)+2\left(t^2-2t+1\right)+5=\left(t^2-1\right)^2+2\left(t-1\right)^2+5\ge5\Rightarrow Q\ge\frac{5}{2}\)Xảy ra đẳng thức khi và chỉ khi x = y =+-1

9 tháng 1 2016

bạn vào câu hỏi tương tự xem bài của Ngô Thị Thu Trang nhé, Mr.Lazy giải rồi đó

9 tháng 1 2016

http://olm.vn/hoi-dap/question/147426.html

20 tháng 8 2016

1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)

Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)

\(\Rightarrow A\ge25\)

Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)

20 tháng 8 2016

2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)

Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)

\(\Rightarrow B\ge400\)

Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)

28 tháng 7 2015

\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\)

\(x^{16}+y^{16}+1+1+1+1+1+1\ge8\sqrt[8]{x^{16}y^{16}}=8x^2y^2\)

\(\Rightarrow A\ge x^4y^4+\frac{1}{4}\left(8x^2y^2-6\right)-\left(x^4y^4+2x^2y^2+1\right)=-\frac{5}{2}\)

Dấu "=" xảy ra khi \(x^2=y^2=1\)

Vậy GTNN của A là -5/2.

6 tháng 10 2019

\(A=\frac{\left(x+4\right)\left(x+9\right)}{x}\left(x>0\right)\)

\(\Leftrightarrow Ax=x^2+13x+36\)

\(\Leftrightarrow x^2+x\left(13-A\right)+36=0\left(1\right)\)

Đế pt có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow\left(13-A\right)^2-4.36\ge0\)

\(\Leftrightarrow\left(13-A\right)^2-12^2\ge0\)

\(\Leftrightarrow\left(13-A-12\right)\left(13-A+12\right)\ge0\)

\(\Leftrightarrow\left(1-A\right)\left(25-A\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}A\le1\\A\ge25\end{cases}}\)

Với \(A=25\) ta tìm được \(x=6\)

Vậy GTNN của A là 25 khi \(x=6\)

Chúc bạn học tốt !!!